Reputation: 1080
I am experimenting with doing bicubic interpolation of some gridded data using Eigen, and I can't figure out how to reshape the 16x1 column vector of coefficients into a 4x4 matrix. Ideally I would like to do something along the lines of https://bitbucket.org/eigen/eigen/pull-request/41/reshape/diff without any copying, but I can't make heads or tails of the docs. Alternatively, a map would be fine as well, but I can't figure out how to use a map on an already existing matrix.
More here: http://en.wikipedia.org/wiki/Bicubic_interpolation
/// The inverse of the A matrix for the bicubic interpolation
/// (http://en.wikipedia.org/wiki/Bicubic_interpolation)
static const double Ainv_data[16*16] = {
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-3, 3, 0, 0, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, -2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, -2, -1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 1, 1, 0, 0,
-3, 0, 3, 0, 0, 0, 0, 0, -2, 0, -1, 0, 0, 0, 0, 0,
0, 0, 0, 0, -3, 0, 3, 0, 0, 0, 0, 0, -2, 0, -1, 0,
9, -9, -9, 9, 6, 3, -6, -3, 6, -6, 3, -3, 4, 2, 2, 1,
-6, 6, 6, -6, -3, -3, 3, 3, -4, 4, -2, 2, -2, -2, -1, -1,
2, 0, -2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, 1, 0, 1, 0,
-6, 6, 6, -6, -4, -2, 4, 2, -3, 3, -3, 3, -2, -1, -2, -1,
4, -4, -4, 4, 2, 2, -2, -2, 2, -2, 2, -2, 1, 1, 1, 1};
Eigen::Matrix<double, 16, 16> Ainv(Ainv_data);
Eigen::Matrix<double, 16, 1> f;
f.setRandom();
Eigen::Matrix<double, 16, 1> alpha = Ainv*f;
// This next line works, but it is making a copy, right?
Eigen::Matrix<double, 4, 4> a(alpha.data());
Upvotes: 2
Views: 2287
Reputation: 29205
The last line is indeed doing a copy, so you can use a Map as follow:
Map<Matrix4d,Eigen::Aligned> a(alpha.data());
a
behaves like a Matrix4d
and it is read-write. The Eigen::Aligned
flag tells Eigen that the pointer you pass to Map is properly aligned for vectorization. The only difference with a pure Matrix4d is that the C++ type is not the same.
Upvotes: 6