Reputation: 1634
My reproducible R example:
f = runif(1500,10,50)
p = matrix(0, nrow=1250, ncol=250)
count = rep(0, 1250)
for(i in 1:1250) {
ref=f[i]
for(j in 1:250) {
p[i,j] = f[i + j - 1] / ref-1
if(p[i,j] == "NaN") {
count[i] = count[i]
}
else if(p[i,j] > (0.026)) {
count[i] = (count[i] + 1)
ref = f[i + j - 1]
}
}
}
To be more precise, I have a set of 600 f-series and this code runs 200 times for each f-series. Currently I am doing the iterations in loops and most of the operations are element-wise. My random variables are f
, the condition if(p[i,j] > (0.026))
, and the number 0.026
in itself.
One can drastically reduce the run-time by vectorizing my code and using functions, specifically the apply family, but I am rusty with apply and looking for some advice to proceed in the right direction.
Upvotes: 1
Views: 1075
Reputation: 1634
@ajmartin, your logic was better and reduced the number of iterations I was attempting. Here is the improved version of your code in R:
f1 <- function() {
n <- 1500
d <- 250
f = runif(n,1,5)
count = rep(0, n-d)
for(i in 1:(n-d)) {
tem <- f[i:(i+d-1)] / f[i] - 1
ind = which(tem>0.026)[1]
while(length(which(tem>0.026))){
count[i] = count[i] + 1
tem[ind:d] = f[ind:d] / tem[ind] - 1
ind = ind - 1 + (which(tem[ind:d] > 0.026)[1])
}
}
list(f, count)
}
system.time(f1())[3]
# elapsed
# 0.09
Implementing this in Rcpp will further reduce system-time but I can't install Rtools as my current machine does not have admin rights. Meanwhile this helps.
Upvotes: 0
Reputation: 2409
Here is an implementation using while
, although it is taking much longer than nested for
loops which is a bit counter intuitive.
f1 <- function() {
n <- 1500
d <- 250
f = runif(n,1,5)
f = embed(f, d)
f = f[-(n-d+1),]
count = rep(0, n-d)
for(i in 1:(n-d)) {
tem <- f[i,]/f[i,1] - 1
ti <- which(t[-d] > 0.026)[1]
while(ti < d & !is.na(ti)) {
ti.plus = ti+1
tem[ti.plus:d] = f[i, ti.plus:d] / tem[ti]
count[i] = count[i] + 1
ti <- ti + which(tem[ti.plus:d-1] > 0.026)[1]
}
f[i] = tem
}
list(f, count)
}
system.time(f1())
#elapsed
#6.365
Upvotes: 1
Reputation: 7373
It is quite easy to put for loop
s in Rcpp. I just copy-pasted your code to Rcpp and haven't checked the validity. In case of discrepancy, let me know. fCpp
returns the list of p
and c
.
cppFunction('List fCpp(NumericVector f) {
const int n=1250;
const int k=250;
NumericMatrix p(n, k);
NumericVector c(n);
for(int i = 0; i < n; i++) {
double ref=f[i];
for(int j = 0; j < k; j++) {
p(i,j) = f[i+j+1]/ref-1;
if(p(i,j) == NAN){
c[i]=c[i];
}
else if(p(i,j) > 0.026){
c[i] = c[i]+1;
ref = f[i+j+1];
}
}
}
return List::create(p, c);
}')
Benchmark
set.seed(1)
f = runif(1500,10,50)
f1 <- function(f){
p = matrix(0, nrow=1250, ncol=250)
count = rep(0, 1250)
for(i in 1:1250) {
ref=f[i]
for(j in 1:250) {
p[i,j] = f[i + j - 1] / ref-1
if(p[i,j] == "NaN") {
count[i] = count[i]
}
else if(p[i,j] > (0.026)) {
count[i] = (count[i] + 1)
ref = f[i + j - 1]
}
}
}
list(p, count)
}
microbenchmark::microbenchmark(fCpp(f), f1(f), times=10L, unit="relative")
Unit: relative
expr min lq mean median uq max neval
fCpp(f) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10
f1(f) 785.8484 753.7044 734.4243 764.5883 718.0868 644.9022 10
Values returned by fCpp(f)
and f1(f)
are essentially identical, apart from column 1 of p
matrix returned by f1
is filled with 0s.
system.time(a <- f1(f))[3]
#elapsed
# 2.8
system.time(a1 <- fCpp(f))[3]
#elapsed
# 0
all.equal( a[[1]], a1[[1]])
#[1] "Mean relative difference: 0.7019406"
all.equal( a[[2]], a1[[2]])
#[1] TRUE
Upvotes: 4