Reputation: 4024
I would like to create an update function using lazy evaluation and the mutate_if function from dplyrExtras by skranz.
It would work something like this:
data %>%
update(variable1_original = variable1_update,
variable2_original = variable2_update)
would be evaluated as
data %>%
mutate_if(!is.na(variable1_update),
variable1_original = variable1_update) %>%
mutate_if(!is.na(variable2_update),
variable2_original = variable2_update) %>%
select(-variable1_update, variable2_update)
Upvotes: 0
Views: 156
Reputation: 206232
Yikes, that package isn't very fun to use. mutate_if
doesn't seem to work with data.frames and the package doesn't have standard-evaluation alternatives for functions like standard dplyr does. Here's an attempt to re-create the function
myupdate <- function(.data, ...) {
dots <- as.list(substitute(...()))
dx <- Reduce(function(a,b) {
upd <- b[[1]]
ifc <- bquote(!is.na(.(upd)))
do.call("mutate_if", c(list(a, ifc), b))
}, split(dots, seq_along(dots)), .data)
select_(dx, .dots=sapply(dots, function(x) bquote(-.(x))))
}
To test it, i used
library(data.table)
dd<-data.table(
a = c(1:3, NA, 5:8)+0,
b = c(1:2, NA, 4:5, NA, 7:8)+100,
x= 1:8+20,
y=1:8+30
)
dd
# a b x y
# 1: 1 101 21 31
# 2: 2 102 22 32
# 3: 3 NA 23 33
# 4: NA 104 24 34
# 5: 5 105 25 35
# 6: 6 NA 26 36
# 7: 7 107 27 37
# 8: 8 108 28 38
and then I ran
myupdate(dd, x=b, y=a)
# x y
# 1: 101 1
# 2: 102 2
# 3: 23 3
# 4: 104 34
# 5: 105 5
# 6: 26 6
# 7: 107 7
# 8: 108 8
Notice how columns "a" and "b" disappear. Also see how values in rows 3 and 6 in column "x" and the value in row 4 in column "y" was preserved because the corresponding values in columns "b" and "a" were NA.
Upvotes: 1