Kernael
Kernael

Reputation: 3280

Load CSV file with PySpark

I'm new to Spark and I'm trying to read CSV data from a file with Spark. Here's what I am doing :

sc.textFile('file.csv')
    .map(lambda line: (line.split(',')[0], line.split(',')[1]))
    .collect()

I would expect this call to give me a list of the two first columns of my file but I'm getting this error :

File "", line 1, in IndexError: list index out of range

although my CSV file as more than one column.

Upvotes: 127

Views: 440293

Answers (13)

Ray
Ray

Reputation: 133

read your csv file in such the way:

df= spark.read.format("csv").option("multiline", True).option("quote", "\"").option("escape", "\"").option("header",True).load(df_path)

spark version is 3.0.1

Upvotes: -1

zero323
zero323

Reputation: 330383

Spark 2.0.0+

You can use built-in csv data source directly:

spark.read.csv(
    "some_input_file.csv", 
    header=True, 
    mode="DROPMALFORMED", 
    schema=schema
)

or

(
    spark.read
    .schema(schema)
    .option("header", "true")
    .option("mode", "DROPMALFORMED")
    .csv("some_input_file.csv")
)

without including any external dependencies.

Spark < 2.0.0:

Instead of manual parsing, which is far from trivial in a general case, I would recommend spark-csv:

Make sure that Spark CSV is included in the path (--packages, --jars, --driver-class-path)

And load your data as follows:

df = (
    sqlContext
    .read.format("com.databricks.spark.csv")
    .option("header", "true")
    .option("inferschema", "true")
    .option("mode", "DROPMALFORMED")
    .load("some_input_file.csv")
)

It can handle loading, schema inference, dropping malformed lines and doesn't require passing data from Python to the JVM.

Note:

If you know the schema, it is better to avoid schema inference and pass it to DataFrameReader. Assuming you have three columns - integer, double and string:

from pyspark.sql.types import StructType, StructField
from pyspark.sql.types import DoubleType, IntegerType, StringType

schema = StructType([
    StructField("A", IntegerType()),
    StructField("B", DoubleType()),
    StructField("C", StringType())
])

(
    sqlContext
    .read
    .format("com.databricks.spark.csv")
    .schema(schema)
    .option("header", "true")
    .option("mode", "DROPMALFORMED")
    .load("some_input_file.csv")
)

Upvotes: 214

y durga prasad
y durga prasad

Reputation: 1202

from pyspark.sql import SparkSession

spark = SparkSession \
    .builder \
    .appName("Python Spark SQL basic example") \
    .config("spark.some.config.option", "some-value") \
    .getOrCreate()

df = spark.read.csv("/home/stp/test1.csv",header=True,sep="|")

print(df.collect())

Upvotes: 41

amarnath pimple
amarnath pimple

Reputation: 135

This is in PYSPARK

path="Your file path with file name"

df=spark.read.format("csv").option("header","true").option("inferSchema","true").load(path)

Then you can check

df.show(5)
df.count()

Upvotes: 10

flow2k
flow2k

Reputation: 4357

When using spark.read.csv, I find that using the options escape='"' and multiLine=True provide the most consistent solution to the CSV standard, and in my experience works the best with CSV files exported from Google Sheets.

That is,

#set inferSchema=False to read everything as string
df = spark.read.csv("myData.csv", escape='"', multiLine=True,
     inferSchema=False, header=True)

Upvotes: 4

Yogesh Awdhut Gadade
Yogesh Awdhut Gadade

Reputation: 2708

If you are having any one or more row(s) with less or more number of columns than 2 in the dataset then this error may arise.

I am also new to Pyspark and trying to read CSV file. Following code worked for me:

In this code I am using dataset from kaggle the link is: https://www.kaggle.com/carrie1/ecommerce-data

1. Without mentioning the schema:

from pyspark.sql import SparkSession  
scSpark = SparkSession \
    .builder \
    .appName("Python Spark SQL basic example: Reading CSV file without mentioning schema") \
    .config("spark.some.config.option", "some-value") \
    .getOrCreate()

sdfData = scSpark.read.csv("data.csv", header=True, sep=",")
sdfData.show()

Now check the columns: sdfData.columns

Output will be:

['InvoiceNo', 'StockCode','Description','Quantity', 'InvoiceDate', 'CustomerID', 'Country']

Check the datatype for each column:

sdfData.schema
StructType(List(StructField(InvoiceNo,StringType,true),StructField(StockCode,StringType,true),StructField(Description,StringType,true),StructField(Quantity,StringType,true),StructField(InvoiceDate,StringType,true),StructField(UnitPrice,StringType,true),StructField(CustomerID,StringType,true),StructField(Country,StringType,true)))

This will give the data frame with all the columns with datatype as StringType

2. With schema: If you know the schema or want to change the datatype of any column in the above table then use this (let's say I am having following columns and want them in a particular data type for each of them)

from pyspark.sql import SparkSession  
from pyspark.sql.types import StructType, StructField
from pyspark.sql.types import DoubleType, IntegerType, StringType
    schema = StructType([\
        StructField("InvoiceNo", IntegerType()),\
        StructField("StockCode", StringType()), \
        StructField("Description", StringType()),\
        StructField("Quantity", IntegerType()),\
        StructField("InvoiceDate", StringType()),\
        StructField("CustomerID", DoubleType()),\
        StructField("Country", StringType())\
    ])

scSpark = SparkSession \
    .builder \
    .appName("Python Spark SQL example: Reading CSV file with schema") \
    .config("spark.some.config.option", "some-value") \
    .getOrCreate()

sdfData = scSpark.read.csv("data.csv", header=True, sep=",", schema=schema)

Now check the schema for datatype of each column:

sdfData.schema

StructType(List(StructField(InvoiceNo,IntegerType,true),StructField(StockCode,StringType,true),StructField(Description,StringType,true),StructField(Quantity,IntegerType,true),StructField(InvoiceDate,StringType,true),StructField(CustomerID,DoubleType,true),StructField(Country,StringType,true)))

Edited: We can use the following line of code as well without mentioning schema explicitly:

sdfData = scSpark.read.csv("data.csv", header=True, inferSchema = True)
sdfData.schema

The output is:

StructType(List(StructField(InvoiceNo,StringType,true),StructField(StockCode,StringType,true),StructField(Description,StringType,true),StructField(Quantity,IntegerType,true),StructField(InvoiceDate,StringType,true),StructField(UnitPrice,DoubleType,true),StructField(CustomerID,IntegerType,true),StructField(Country,StringType,true)))

The output will look like this:

sdfData.show()

+---------+---------+--------------------+--------+--------------+----------+-------+
|InvoiceNo|StockCode|         Description|Quantity|   InvoiceDate|CustomerID|Country|
+---------+---------+--------------------+--------+--------------+----------+-------+
|   536365|   85123A|WHITE HANGING HEA...|       6|12/1/2010 8:26|      2.55|  17850|
|   536365|    71053| WHITE METAL LANTERN|       6|12/1/2010 8:26|      3.39|  17850|
|   536365|   84406B|CREAM CUPID HEART...|       8|12/1/2010 8:26|      2.75|  17850|
|   536365|   84029G|KNITTED UNION FLA...|       6|12/1/2010 8:26|      3.39|  17850|
|   536365|   84029E|RED WOOLLY HOTTIE...|       6|12/1/2010 8:26|      3.39|  17850|
|   536365|    22752|SET 7 BABUSHKA NE...|       2|12/1/2010 8:26|      7.65|  17850|
|   536365|    21730|GLASS STAR FROSTE...|       6|12/1/2010 8:26|      4.25|  17850|
|   536366|    22633|HAND WARMER UNION...|       6|12/1/2010 8:28|      1.85|  17850|
|   536366|    22632|HAND WARMER RED P...|       6|12/1/2010 8:28|      1.85|  17850|
|   536367|    84879|ASSORTED COLOUR B...|      32|12/1/2010 8:34|      1.69|  13047|
|   536367|    22745|POPPY'S PLAYHOUSE...|       6|12/1/2010 8:34|       2.1|  13047|
|   536367|    22748|POPPY'S PLAYHOUSE...|       6|12/1/2010 8:34|       2.1|  13047|
|   536367|    22749|FELTCRAFT PRINCES...|       8|12/1/2010 8:34|      3.75|  13047|
|   536367|    22310|IVORY KNITTED MUG...|       6|12/1/2010 8:34|      1.65|  13047|
|   536367|    84969|BOX OF 6 ASSORTED...|       6|12/1/2010 8:34|      4.25|  13047|
|   536367|    22623|BOX OF VINTAGE JI...|       3|12/1/2010 8:34|      4.95|  13047|
|   536367|    22622|BOX OF VINTAGE AL...|       2|12/1/2010 8:34|      9.95|  13047|
|   536367|    21754|HOME BUILDING BLO...|       3|12/1/2010 8:34|      5.95|  13047|
|   536367|    21755|LOVE BUILDING BLO...|       3|12/1/2010 8:34|      5.95|  13047|
|   536367|    21777|RECIPE BOX WITH M...|       4|12/1/2010 8:34|      7.95|  13047|
+---------+---------+--------------------+--------+--------------+----------+-------+
only showing top 20 rows

Upvotes: 5

Jeril
Jeril

Reputation: 8551

If you want to load csv as a dataframe then you can do the following:

from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)

df = sqlContext.read.format('com.databricks.spark.csv') \
    .options(header='true', inferschema='true') \
    .load('sampleFile.csv') # this is your csv file

It worked fine for me.

Upvotes: 7

optimist
optimist

Reputation: 1018

Now, there's also another option for any general csv file: https://github.com/seahboonsiew/pyspark-csv as follows:

Assume we have the following context

sc = SparkContext
sqlCtx = SQLContext or HiveContext

First, distribute pyspark-csv.py to executors using SparkContext

import pyspark_csv as pycsv
sc.addPyFile('pyspark_csv.py')

Read csv data via SparkContext and convert it to DataFrame

plaintext_rdd = sc.textFile('hdfs://x.x.x.x/blah.csv')
dataframe = pycsv.csvToDataFrame(sqlCtx, plaintext_rdd)

Upvotes: 6

abby sobh
abby sobh

Reputation: 1624

This is in-line with what JP Mercier initially suggested about using Pandas, but with a major modification: If you read data into Pandas in chunks, it should be more malleable. Meaning, that you can parse a much larger file than Pandas can actually handle as a single piece and pass it to Spark in smaller sizes. (This also answers the comment about why one would want to use Spark if they can load everything into Pandas anyways.)

from pyspark import SparkContext
from pyspark.sql import SQLContext
import pandas as pd

sc = SparkContext('local','example')  # if using locally
sql_sc = SQLContext(sc)

Spark_Full = sc.emptyRDD()
chunk_100k = pd.read_csv("Your_Data_File.csv", chunksize=100000)
# if you have headers in your csv file:
headers = list(pd.read_csv("Your_Data_File.csv", nrows=0).columns)

for chunky in chunk_100k:
    Spark_Full +=  sc.parallelize(chunky.values.tolist())

YourSparkDataFrame = Spark_Full.toDF(headers)
# if you do not have headers, leave empty instead:
# YourSparkDataFrame = Spark_Full.toDF()
YourSparkDataFrame.show()

Upvotes: 6

Galen Long
Galen Long

Reputation: 3911

Simply splitting by comma will also split commas that are within fields (e.g. a,b,"1,2,3",c), so it's not recommended. zero323's answer is good if you want to use the DataFrames API, but if you want to stick to base Spark, you can parse csvs in base Python with the csv module:

# works for both python 2 and 3
import csv
rdd = sc.textFile("file.csv")
rdd = rdd.mapPartitions(lambda x: csv.reader(x))

EDIT: As @muon mentioned in the comments, this will treat the header like any other row so you'll need to extract it manually. For example, header = rdd.first(); rdd = rdd.filter(lambda x: x != header) (make sure not to modify header before the filter evaluates). But at this point, you're probably better off using a built-in csv parser.

Upvotes: 19

G Quintana
G Quintana

Reputation: 4667

Are you sure that all the lines have at least 2 columns? Can you try something like, just to check?:

sc.textFile("file.csv") \
    .map(lambda line: line.split(",")) \
    .filter(lambda line: len(line)>1) \
    .map(lambda line: (line[0],line[1])) \
    .collect()

Alternatively, you could print the culprit (if any):

sc.textFile("file.csv") \
    .map(lambda line: line.split(",")) \
    .filter(lambda line: len(line)<=1) \
    .collect()

Upvotes: 71

iec2011007
iec2011007

Reputation: 1846

If your csv data happens to not contain newlines in any of the fields, you can load your data with textFile() and parse it

import csv
import StringIO

def loadRecord(line):
    input = StringIO.StringIO(line)
    reader = csv.DictReader(input, fieldnames=["name1", "name2"])
    return reader.next()

input = sc.textFile(inputFile).map(loadRecord)

Upvotes: 5

JP Mercier
JP Mercier

Reputation: 377

And yet another option which consist in reading the CSV file using Pandas and then importing the Pandas DataFrame into Spark.

For example:

from pyspark import SparkContext
from pyspark.sql import SQLContext
import pandas as pd

sc = SparkContext('local','example')  # if using locally
sql_sc = SQLContext(sc)

pandas_df = pd.read_csv('file.csv')  # assuming the file contains a header
# pandas_df = pd.read_csv('file.csv', names = ['column 1','column 2']) # if no header
s_df = sql_sc.createDataFrame(pandas_df)

Upvotes: 22

Related Questions