Reputation: 13
I am a novice at R and have a ggplot related question. Below is a dummy data frame with one column containing the predictor (xvar) and multiple columns of dichotomous outcomes (yvar1, yvar2, yvar3).
df <- data.frame("xvar"=c(0,100,200,300,400,500,600,1000),"yvar1"= c(0,0,0,0,0,0,1,1),"yvar2"=c(0,0,1,1,1,1,1,1),"yvar3"=c(0,0,1,1,0,1,1,1))
I have created a for loop to run a logistic regression for each yvar against the predictor xvar. I am able to successfully plot the regression for each yvar. Please ignore the regression warnings (this is a dummy dataset)
for (i in 2:4) {
logr.yvar <- glm(df[,names(df[i])] ~ xvar, data=df, family=binomial(link="logit"))
print(logr.yvar)
plot(df$xvar, df[,i])
curve(predict(logr.yvar, data.frame(xvar=x), type="response"), add=TRUE)
}
Instead of using the base plot function, I would like to switch to ggplot2. I am currently able to generate ggplots for individual regressions:
ggplot(df, aes(x=xvar, y=yvar1)) + geom_point() +
stat_smooth(method="glm", family="binomial", se=TRUE)
How can I set up looping using ggplot2?
Upvotes: 1
Views: 344
Reputation: 22333
If you really want to loop, you could use lapply
.
p <- lapply(names(df)[-1], function(nm){
ggplot(df, aes_string(x="xvar", y=nm)) + geom_point() +
stat_smooth(method="glm", family="binomial", se=TRUE)
})
print(p)
However, I suspect that reshaping your data and displaying all the graphs together may be better.
# reshaping data
require(reshape2)
df.melt <- melt(df, id.var='xvar')
# first variation, using facets
ggplot(df.melt, aes(xvar, value)) +
geom_point() +
stat_smooth(method="glm", family="binomial", se=TRUE) +
facet_grid(variable~.)
# second variation using colors
ggplot(df.melt, aes(xvar, value)) +
geom_point() +
stat_smooth(aes(color = variable, fill = variable),
method="glm", family="binomial", se=TRUE, size = 1.2)
Upvotes: 0