Reputation: 505
I am trying to build an Elasticsearch query that will return only unique values for a particular field.
I do not want to return all the values for that field nor count them.
For example, if there are 50 different values currently contained by the field, and I do a search to return only 20 hits (size=20
). I want each of the 20 results to have a unique result for that field, but I don't care about the 30 other values not represented in the result.
For example with the following search (pseudo code - not checked):
{
from: 0,
size: 20,
query: {
bool: {
must: {
range: { field1: { gte: 50 }},
term: { field2: 'salt' },
/**
* I want to return only unique values for "field3", but I
* don't want to return all of them or count them.
*
* How do I specify this in my query?
**/
unique: 'field3',
},
mustnot: {
match: { field4: 'pepper'},
}
}
}
}
Upvotes: 4
Views: 17812
Reputation: 945
I'm very surprised a filter aggregation hasn't been suggested. It goes back all the way to ES version 1.3.
The filter aggregation is similar to a regular filter query but can instead be nested into an aggregation chain to filter out counts of documents that don't meet a particular criteria and give you sub-aggregation results based only on the documents that meet the criteria of the query.
First, we'll put our mapping.
curl --request PUT \
--url http://localhost:9200/items \
--header 'content-type: application/json' \
--data '{
"mappings": {
"item": {
"properties": {
"field1" : { "type": "integer" },
"field2" : { "type": "keyword" },
"field3" : { "type": "keyword" },
"field4" : { "type": "keyword" }
}
}
}
}
'
Then let's load some data.
curl --request PUT \
--url http://localhost:9200/items/_bulk \
--header 'content-type: application/json' \
--data '{"index":{"_index":"items","_type":"item","_id":1}}
{"field1":50, "field2":["salt", "vinegar"], "field3":["garlic", "onion"], "field4":"paprika"}
{"index":{"_index":"items","_type":"item","_id":2}}
{"field1":40, "field2":["salt", "pepper"], "field3":["onion"]}
{"index":{"_index":"items","_type":"item","_id":3}}
{"field1":100, "field2":["salt", "vinegar"], "field3":["garlic", "chives"], "field4":"pepper"}
{"index":{"_index":"items","_type":"item","_id":4}}
{"field1":90, "field2":["vinegar"], "field3":["chives", "garlic"]}
{"index":{"_index":"items","_type":"item","_id":5}}
{"field1":900, "field2":["salt", "vinegar"], "field3":["garlic", "chives"], "field4":"paprika"}
'
Notice, that only the documents with id's 1 and 5 will pass the criteria and so we will be left to aggregate on these two field3 arrays and four values total. ["garlic", "chives"], ["garlic", "onion"]
. Also notice that field3 can be an array or single value in the data but I'm making them arrays to illustrate how the counts will work.
curl --request POST \
--url http://localhost:9200/items/item/_search \
--header 'content-type: application/json' \
--data '{
"size": 0,
"aggregations": {
"top_filter_agg" : {
"filter" : {
"bool": {
"must":[
{
"range" : { "field1" : { "gte":50} }
},
{
"term" : { "field2" : "salt" }
}
],
"must_not":[
{
"term" : { "field4" : "pepper" }
}
]
}
},
"aggs" : {
"field3_terms_agg" : { "terms" : { "field" : "field3" } }
}
}
}
}
'
After running the conjuncted filter/terms aggregation. We only have a count of 4 terms on field3 and three unique terms altogether.
{
"took": 46,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 5,
"max_score": 0.0,
"hits": []
},
"aggregations": {
"top_filter_agg": {
"doc_count": 2,
"field3_terms_agg": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "garlic",
"doc_count": 2
},
{
"key": "chives",
"doc_count": 1
},
{
"key": "onion",
"doc_count": 1
}
]
}
}
}
}
Upvotes: 1
Reputation: 8718
You should be able to do this pretty easily with a terms aggregation.
Here's an example. I defined a simple index, containing a field that has "index": "not_analyzed"
so we can get the full text of each field as a unique value, rather than terms generated from tokenizing it, etc.
DELETE /test_index
PUT /test_index
{
"settings": {
"number_of_shards": 1
},
"mappings": {
"doc": {
"properties": {
"title": {
"type": "string",
"index": "not_analyzed"
}
}
}
}
}
Then I add a few docs with the bulk
API.
POST /test_index/_bulk
{"index":{"_index":"test_index","_type":"doc","_id":1}}
{"title":"first doc"}
{"index":{"_index":"test_index","_type":"doc","_id":2}}
{"title":"second doc"}
{"index":{"_index":"test_index","_type":"doc","_id":3}}
{"title":"third doc"}
{"index":{"_index":"test_index","_type":"doc","_id":4}}
{"title":"third doc"}
Now we can run our terms aggregation:
POST /test_index/_search?search_type=count
{
"aggs": {
"unique_vals": {
"terms": {
"field": "title"
}
}
}
}
...
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"failed": 0
},
"hits": {
"total": 4,
"max_score": 0,
"hits": []
},
"aggregations": {
"unique_vals": {
"buckets": [
{
"key": "third doc",
"doc_count": 2
},
{
"key": "first doc",
"doc_count": 1
},
{
"key": "second doc",
"doc_count": 1
}
]
}
}
}
Upvotes: 3