Reputation: 5282
I have a pandas data frame with a few columns. For each column I want to calculate certain percentiles. I then want to replace my data frame with the percentile each observation falls in.
import pandas as pd
M = np.random.uniform(0, 100, (10, 6))
df = pd.DataFrame(M, columns=['c%i'%i for i in range(6)])
>>> df[:2]
c0 c1 c2 c3 c4 c5
0 24.883165 2.299054 11.002427 98.711018 39.042343 50.408190
1 42.099085 78.028507 25.099002 39.099628 38.687483 15.794404
df.quantile([.1, .5, .9])
c0 c1 c2 c3 c4 c5
0.1 21.418274 7.094343 10.904711 25.014356 15.958873 21.984237
0.5 41.793102 36.973471 29.031637 64.246471 41.136274 42.408574
0.9 75.724554 62.274133 86.604768 93.690257 73.757992 89.365606
For example, in row 0, c0=24.883. The largest c0 quantile q_c0 where 24.883<=q_c0 would be 0.5. In my new data frame I would then want to replace 24.883 with 0.5.
Upvotes: 3
Views: 2669
Reputation: 97291
How about use qcut()
:
import pandas as pd
import numpy as np
M = np.random.uniform(0, 100, (10, 6))
df = pd.DataFrame(M, columns=['c%i'%i for i in range(6)])
bins = [0.0, 0.1, 0.5, 0.9, 1.0]
df.apply(lambda s:pd.qcut(s, bins, bins[1:]).astype(float))
Upvotes: 4