Reputation: 6450
I am trying to compute the matrix which has the following equation.
S = (D^−1/2) * W * (D^−1/2)
where D is a diagonal matrix of this form:
array([[ 0.59484625, 0. , 0. , 0. ],
[ 0. , 0.58563893, 0. , 0. ],
[ 0. , 0. , 0.58280472, 0. ],
[ 0. , 0. , 0. , 0.58216725]])
and W:
array([[ 0. , 0.92311635, 0.94700586, 0.95599748],
[ 0.92311635, 0. , 0.997553 , 0.99501248],
[ 0.94700586, 0.997553 , 0. , 0.9995501 ],
[ 0.95599748, 0.99501248, 0.9995501 , 0. ]])
I tried to compute D^-1/2
by using numpy
function linalg.matrix_power(D,-1/2)
and numpy.power(D,-1/2)
and matrix_power
function raises TypeError: exponent must be an integer
and numpy.power
function raises RuntimeWarning: divide by zero encountered in power
.
How to compute negative power -1/2 for diagonal matrix. Please help.
Upvotes: 6
Views: 4076
Reputation: 41
You can do the following:
numpy.power(D,-1/2, where=(D!=0))
And then you will avoid getting the warning: RuntimeWarning: divide by zero encountered in power
numpy will divide every value on the matrix element-wise by it's own square root, which is not zero, so basically you won't try to divide by zero anymore.
Upvotes: -1
Reputation: 250981
If you can update D
(like in your own answer) then simply update the items at its diagonal indices and then call np.dot
:
>>> D[np.diag_indices(4)] = 1/ (D.diagonal()**0.5)
>>> np.dot(D, W).dot(D)
array([[ 0. , 0.32158153, 0.32830723, 0.33106193],
[ 0.32158153, 0. , 0.34047794, 0.33923936],
[ 0.32830723, 0.34047794, 0. , 0.33913717],
[ 0.33106193, 0.33923936, 0.33913717, 0. ]])
Or create a new zeros array and then fill its diagonal elements with 1/ (D.diagonal()**0.5)
:
>>> arr = np.zeros(D.shape)
>>> np.fill_diagonal(arr, 1/ (D.diagonal()**0.5))
>>> np.dot(arr, W).dot(arr)
array([[ 0. , 0.32158153, 0.32830723, 0.33106193],
[ 0.32158153, 0. , 0.34047794, 0.33923936],
[ 0.32830723, 0.34047794, 0. , 0.33913717],
[ 0.33106193, 0.33923936, 0.33913717, 0. ]])
Upvotes: 7
Reputation: 6450
I got the answer by computing thro' mathematical terms but would love to see any straight forward one liners :)
def compute_diagonal_to_negative_power():
for i in range(4):
for j in range(4):
if i == j:
element = D[i][j]
numerator = 1
denominator = math.sqrt(element)
D[i][j] = numerator / denominator
return D
diagonal_matrix = compute_diagonal_to_negative_power()
S = np.dot(diagonal_matrix, W).dot(diagonal_matrix)
print(S)
"""
[[ 0. 0.32158153 0.32830723 0.33106193]
[ 0.32158153 0. 0.34047794 0.33923936]
[ 0.32830723 0.34047794 0. 0.33913718]
[ 0.33106193 0.33923936 0.33913718 0. ]]
"""
Source: https://math.stackexchange.com/questions/340321/raising-a-square-matrix-to-a-negative-half-power
Upvotes: 0