Reputation: 87
I've been trying to implement this in Java:
dstream.foreachRDD { rdd =>
rdd.foreachPartition { partitionOfRecords =>
val connection = createNewConnection()
partitionOfRecords.foreach(record => connection.send(record))
connection.close()
}
}
for the types of examples that the Spark documentation provides. The following works as expected:
import scala.Tuple2;
import com.google.common.collect.Lists;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.StorageLevels;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.streaming.Time;
import java.util.regex.Pattern;
import java.io.IOException;
/**
* Counts words in UTF8 encoded, '\n' delimited text received from the network every second.
*
* Usage: JavaNetworkWordCount <hostname> <port>
* <hostname> and <port> describe the TCP server that Spark Streaming would connect to receive data.
*
* To run this on your local machine, you need to first run a Netcat server
* `$ nc -lk 9999`
* and then run the example
* `$ bin/run-example org.apache.spark.examples.streaming.JavaNetworkWordCount localhost 9999`
*/
public final class SocketWriter {
private static final Pattern SPACE = Pattern.compile(" ");
public static void main(String[] args) {
if (args.length < 2) {
System.err.println("Usage: JavaNetworkWordCount <hostname> <port>");
System.exit(1);
}
// Create the context with a 1 second batch size
SparkConf sparkConf = new SparkConf().setAppName("JavaNetworkWordCount");
JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, Durations.seconds(1));
// Create a JavaReceiverInputDStream on target ip:port and count the
// words in input stream of \n delimited text (eg. generated by 'nc')
// Note that no duplication in storage level only for running locally.
// Replication necessary in distributed scenario for fault tolerance.
JavaReceiverInputDStream<String> lines = ssc.socketTextStream(
args[0], Integer.parseInt(args[1]), StorageLevels.MEMORY_AND_DISK_SER);
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterable<String> call(String x) {
return Lists.newArrayList(SPACE.split(x));
}
});
JavaPairDStream<String, Integer> wordCounts = words.mapToPair(
new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
}).reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
});
wordCounts.foreachRDD(new Function2<JavaPairRDD<String, Integer>, Time, Void>() {
@Override
public Void call(JavaPairRDD<String, Integer> rdd, Time time) throws IOException {
String counts = "Counts at time " + time + " " + rdd.collect();
System.out.println(counts);
return null;
}
});
ssc.start();
ssc.awaitTermination();
}
}
But I need to be able to output data to a socket by modifying this section to use the "design pattern" specified in Scala at the top of this question.
wordCounts.foreachRDD(new Function2<JavaPairRDD<String, Integer>, Time, Void>() {
@Override
public Void call(JavaPairRDD<String, Integer> rdd, Time time) throws IOException {
String counts = "Counts at time " + time + " " + rdd.collect();
System.out.println(counts);
return null;
}
});
I tried to use Socket and PrintWriter objects here, but cannot make it work, and I can't find any examples of people doing this. Any help is appreciated.
Upvotes: 3
Views: 2601
Reputation: 1861
I just show you question as I was trying to do the same, and finally I have done it! Probably is too late for you, but hope not for many other people.
As here in the official documentation says, I have not done it in the most optimal way, which is using a pool of connections so Spark would not have to open and close the connection for every RDD, but is still working, here is my code:
wordCounts.foreachRDD(new VoidFunction<JavaRDD<String>>() {
public void call(JavaRDD<String> rdd) throws Exception {
rdd.foreachPartition(new VoidFunction<Iterator<String>>() {
public void call(Iterator<String> partitionOfRecords) throws Exception {
Socket mySocket = new Socket("localhost", 9998);
final PrintWriter out = new PrintWriter(mySocket.getOutputStream(), true);
while(partitionOfRecords.hasNext()) {
out.println(partitionOfRecords.next());
}
mySocket.close();
}
});
}
});
Upvotes: 1