Reputation: 971
I'm working on an application were I have a set of Contours(each one representing a Potential Line) and I wanna check "How straight" is that contour/shape. The article I am using as a refrence uses the following technique:
It Matches a "segmented" line crossing the shape like so-
Then grading how "straight" is the line.
Heres an example of the Contours I am working on:
How would you go about implementing this technique? Is there any other way of checking "How Straight" is a contour\shape?
Regards!
Upvotes: 0
Views: 843
Reputation: 105
My first guess would be to use a coefficient of determination. That would be, fit a linear line to all your point assuming some reasonable origin where you won't receive rounding errors and calculate R^2.
A more advanced approach, if all contours are disconnected components, would be to calculate the structure model index (the link is for bone morphometry, but they explain the concept and cite the original paper.) This gives you a number that tells you how much your segment is "like a rod". This is just an idea, though. Anything that forms curves or has branches will be less and less like a rod.
I would say that it also depends on what you are using the metric for and if your contours are always generally carrying left to right.
An additional method would be to create the covariance matrix of your points, calculate the eigenvalues from that matrix, and take their ratio (where the ratio is greater than or equal to 1; otherwise, invert the ratio.) This is the basic principle behind a PCA besides the final ratio. If you have a rather linear data set (the data set varies in only one direction) then you will have a very large ratio. As the data set becomes less and less linear (or more uncorrelated) you would see the ratio approach one. A perfectly linear data set would be infinity and a perfect circle one (I believe, but I would appreciate if someone could verify this for me.) Also, working in two dimensions would mean the calculation would be computationally cheap and straight forward.
This would handle outliers very well and would be invariant to the rotation and shape of your contour. You also have a number which is always positive. The only issue would be preventing overflow when dividing the two eigenvalues. Then again you could always divide the smaller eigenvalue by the larger and your metric would be bound between zero and one, one being a circle and zero being a straight line.
Either way, you would need to test if this parameter is sensitive enough for your application.
Upvotes: 2
Reputation: 179779
The trick is to use image moments. In short, you calculate the minimum inertia around an axis, the inertia around an axis perpendicular to this, and the ratio between them (which is always between 0 and 1; since inertia is non-negative)
For a straight line, the inertia along the line is zero, so the ratio is also zero. For a circle, the inertia is the same along all axis so the ratio is one. Your segmented line will be 0.01 or so as it's a fairly good match.
A simpler method is to compare the circumference of the the convex polygon containing the shape with the circumference of the shape itself. For a line, they're trivially equal, and for a not too crooked shape it's still comparable.
Upvotes: 1
Reputation: 4335
One example for a simple algorithm is using the dot product between two segments to determine the angle between them. The formula for dot product is:
A * B = ||A|| ||B|| cos(theta)
Solving the equation for cos(theta) yields
cos(theta) = (A * B / (||A|| ||B||))
Since cos(0) = 1, cos(pi) = -1.0
and you're checking for the "straightness" of the lines, a line whose normalization of cos(theta)
angles is closest to -1.0 is the straightest.
straightness = SUM(cos(theta))/(number of line segments)
where a straight line is close to -1.0, and a non-straight line approaches 1.0. Keep in mind this is a cursory evaluation of this algorithm and it obviously has edge cases and caveats that would need to be addressed in an implementation.
Upvotes: 0