Reputation: 479
I'm new for analyzing the algorithms and the time for them.. This algorithm is posted in http://geeksforgeeks.com and they wrote that the time complexity of the algorithm is O(V^2) which i think that it's O(V^3):
int minDistance(int dist[], bool sptSet[])
{
// Initialize min value
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min)
min = dist[v], min_index = v;
return min_index;
}
// A utility function to print the constructed distance array
int printSolution(int dist[], int n)
{
printf("Vertex Distance from Source\n");
for (int i = 0; i < V; i++)
printf("%d \t\t %d\n", i, dist[i]);
}
// Funtion that implements Dijkstra's single source shortest path algorithm
// for a graph represented using adjacency matrix representation
void dijkstra(int graph[V][V], int src)
{
int dist[V]; // The output array. dist[i] will hold the shortest
// distance from src to i
bool sptSet[V]; // sptSet[i] will true if vertex i is included in shortest
// path tree or shortest distance from src to i is finalized
// Initialize all distances as INFINITE and stpSet[] as false
for (int i = 0; i < V; i++)
dist[i] = INT_MAX, sptSet[i] = false;
// Distance of source vertex from itself is always 0
dist[src] = 0;
// Find shortest path for all vertices
for (int count = 0; count < V-1; count++)
{
// Pick the minimum distance vertex from the set of vertices not
// yet processed. u is always equal to src in first iteration.
int u = minDistance(dist, sptSet);
// Mark the picked vertex as processed
sptSet[u] = true;
// Update dist value of the adjacent vertices of the picked vertex.
for (int v = 0; v < V; v++)
// Update dist[v] only if is not in sptSet, there is an edge from
// u to v, and total weight of path from src to v through u is
// smaller than current value of dist[v]
if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX
&& dist[u]+graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];
}
// print the constructed distance array
printSolution(dist, V);
}
Where the graph represented inside graph[][] (matrix representation).
Thanks in advance
Upvotes: 0
Views: 357
Reputation: 178491
The solution is indeed O(V^2):
for (int i = 0; i < V; i++)
dist[i] = INT_MAX, sptSet[i] = false;
This part runs BEFORE the main loop, and in complexity of O(V) -.
for (int count = 0; count < V-1; count++)
{
This is the main loop, it runs O(V)
times overall, and each time it requires:
int u = minDistance(dist, sptSet);
This runs one time per each different value of count
, and its complexity is O(V)
, so we have O(V^2)` by now.
sptSet[u] = true;
This is O(1), and runs O(V) times.
for (int v = 0; v < V; v++)
This loop runs O(V) times, for each value of count
, let's examine what happens each time you run it:
if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX
&& dist[u]+graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];
All of those are O(1)
, and done per each (count,v)
pair, and there are O(V^2)
of those pairs.
So, totally O(V^2)
.
Note that for more efficient graph representation, we can run Dijkstra's algorithm in O(E + VlogV)
, which might be better in case of sparse graphs.
Upvotes: 2