Reputation: 457
I've been trying to create a variable length multidimensional array. As I understand, you can't create variable length arrays on the stack, but you can create 1D variable length arrays in C++ using dynamic allocation. Correct me if this is a compiler extension, but it seems to work fine on clang and gcc with --pedantic set.
int size = 10;
int *ary = new int[size]();
I tried to extend the concept to multidimensional arrays. Here are my results. The problem with possiblity 1 and 2 is that they require a constexpr and do not work with variable sizes. Is it possible to make either of them accept a variable as its size? I put possibility 3 as I am aware of it, but it lacks [][] access, which is what I'm looking for.
constexpr int constSize = 10;
//Possibility 1: Only works in C++11
//Creates CONTIGUOUS 2D array equivalent to array[n*n], but with [][] access
int (*ary1)[constSize] = new int[constSize][constSize]();
delete [] ary1;
//Possibility 2:
//Really horrible as it does NOT create a contiguous 2D array
//Instead creates n seperate arrays that are each themselves contiguous
//Also requires a lot of deletes, quite messy
int **ary2 = new int*[constSize];
for (int i = 0; i < n; ++i)
ary2[i] = new int[constSize];
for (int i = 0; i < n; ++i)
delete [] ary2;
delete [] ary2;
//Possibility 3:
//This DOES work with non-constexpr variable
//However it does not offer [][] access, need to access element using ary[i*n+j]
int *ary3 = new int[size*size];
delete [] ary3;
Upvotes: 1
Views: 2199
Reputation: 275230
The number of dimensions is fixed, because the type of what []
returns changes based on the number of dimensions. Access is through both repeated []
and (...)
. The first mimics C-style array lookup. The (...)
syntax must be complete (it must pass N
args to an N
dimensional array). There is a modest efficiency cost to support both.
Uses C++14 features to save on verbosity. None are essential.
Using an an n_dim_array
with 0
dimensions will give bad results.
template<class T, size_t N>
struct array_index {
size_t const* dimensions;
size_t offset;
T* buffer;
array_index<T,N-1> operator[](size_t i)&&{
return {dimensions+1, (offset+i)* *dimensions, buffer};
}
template<class...Is, std::enable_if_t<sizeof...(Is) == N>>
T& operator()(size_t i, Is...is)&&{
return std::move(*this)[i](is...);
}
};
template<class T>
struct array_index<T,0> {
size_t const* dimension;
size_t offset;
T* buffer;
T& operator[](size_t i)&&{
return buffer[i+offset];
}
T& operator()(size_t i)&&{
return std::move(*this)[i];
}
};
template<class T, size_t N>
struct n_dim_array {
template<class...Szs, class=std::enable_if_t<sizeof...(Szs)==N>>
explicit n_dim_array( Szs... sizes ):
szs{ { static_cast<size_t>(sizes)... } }
{
size_t sz = 1;
for( size_t s : szs )
sz *= s;
buffer.resize(sz);
}
n_dim_array( n_dim_array const& o ) = default;
n_dim_array& operator=( n_dim_array const& o ) = default;
using top_level_index = array_index<T,N-1>;
top_level_index index(){return {szs.data(),0,buffer.data()};}
auto operator[]( size_t i ) {
return index()[i];
}
using const_top_level_index = array_index<const T,N-1>;
const_top_level_index index()const{return {szs.data(),0,buffer.data()};}
auto operator[]( size_t i ) const {
return index()[i];
}
template<class...Is,class=std::enable_if_t<sizeof...(Is)==N>>
T& operator()(Is...is){
return index()(is...);
}
template<class...Is,class=std::enable_if_t<sizeof...(Is)==N>>
T const& operator()(Is...is) const {
return index()(is...);
}
private:
n_dim_array() = delete;
std::array<size_t,N> szs;
std::vector<T> buffer;
};
Does not support for(:)
loop iteration. Writing an iterator isn't that hard: I'd do it in array_index
.
Upvotes: 1
Reputation: 42828
This will create a dynamically allocated 2D variable-length array, with dimensions w
and h
:
std::vector<std::vector<int>> ary4(w, std::vector<int>(h));
It can be accessed with [][]
:
ary4[x][y] = 0;
However, it's not contiguously allocated. To get a contiguous array, here's one solution:
template<typename E>
class Contiguous2DArray
{
public:
Contiguous2DArray(std::size_t width, std::size_t height)
: array(width * height), width(width) {}
E& operator()(std::size_t x, std::size_t y)
{ return array[x + width * y]; }
private:
std::vector<E> array;
std::size_t width;
}
It can be used like this:
Contiguous2DArray<int> ary5(w, h);
ary5(x, y) = 0;
Upvotes: 1