Reputation: 101
I am trying to use Newton's 2nd law to simulate sun-earth-moon system. I can get the moon and earth parallely rotating around the sun. But the moon does not rotate around the earth.
I know there should be attraction between the moon and sun, and also between the moon and the earth. So I added the acceleration together. But in the 3D visualization, it seems there's no effect of the earth to the moon.
Could anyone check my code on the motion part:
def movePlanets(self):
rate(200)
G = (6.673e-11)
dt = 12*3600 # half day
for p in self.planets:
p.moveTo((p.getXPos() + dt * p.getXVel()),
(p.getYPos() + dt * p.getYVel()),
(p.getZPos() + dt * p.getZVel()))
rx = self.thesun.getXPos() - p.getXPos()
ry = self.thesun.getYPos() - p.getYPos()
rz = self.thesun.getZPos() - p.getZPos()
r = math.sqrt(rx**2 + ry**2 + rz**2)
accx = G * self.thesun.getMass()*rx/r**3
accy = G * self.thesun.getMass()*ry/r**3
accz = G * self.thesun.getMass()*rz/r**3
for pTwo in self.planets:
if(pTwo != p):
rx = pTwo.getXPos() - p.getXPos()
ry = pTwo.getYPos() - p.getYPos()
rz = pTwo.getZPos() - p.getZPos()
r = math.sqrt(rx**2 + ry**2 + rz**2)
accx = accx + (G * pTwo.getMass()*rx/r**3)
accy = accy + (G * pTwo.getMass()*ry/r**3)
accz = accz + (G * pTwo.getMass()*rz/r**3)
p.setXVel(p.getXVel() + dt * accx)
p.setYVel(p.getYVel() + dt * accy)
p.setZVel(p.getZVel() + dt * accz)
Thank you so much!
Upvotes: 0
Views: 3989
Reputation: 184
I think a third 'star' can easily be added easily:
from visual import *
G = 6.7e-11
giant = sphere(pos=(-1e11,0,0), radius=2e10, color=color.red,
make_trail=True, interval=10)
giant.mass = 2e30
giant.p = vector(0, 0, -1e4) * giant.mass
dwarf = sphere(pos=(1.5e11,0,0), radius=1e10, color=color.yellow,
make_trail=True, interval=10)
dwarf.mass = 1e30
dwarf.p = -giant.p
dt = 1e5
while True:
rate(200)
dist = dwarf.pos - giant.pos
force = G * giant.mass * dwarf.mass * dist / mag(dist)**3
giant.p = giant.p + force*dt
dwarf.p = dwarf.p - force*dt
for star in [giant, dwarf]:
star.pos = star.pos + star.p/star.mass * dt
I hope this one helps!
Upvotes: 1
Reputation: 11
I have done this simulation, and I don't think you use "enough" Physics, which makes the code a lot easier to understand. Honestly, I cannot understand your code. Here is the approach (as my Physics professor taught me):
in the main loop:
while True:
for each "planet":
calculate net force (use the gravity formula)
update momentum: P = P + net_force*dt
update velocity: v = P/mass
update position: pos = pos + v*dt
Notes: the following variables (attributes) should be vector type for easy calculation using vector operators (addition, subtraction, and scalar multiplication): position, velocity, and net_force
Upvotes: 1