Reputation: 717
I have a 3D array of binary data. I want to project this to 3 2D images - side on, head on, birds eye.
I have written the code:
for x in range(data.shape[2]):
for y in range(data.shape[0]):
val = 0
for z in range(data.shape[1]):
if data[y][z][x] > 0:
val = 255
break
side[y][x] = val
But this is horrifically slow (75s!) for a ~700x300x300 matrix.
What is the fastest way of achieving this task?
EDIT:
To save the image, I have used:
sideImage = Image.fromarray(side)
sideImage.convert('RGB').save("sideImage.png")
Upvotes: 2
Views: 13971
Reputation: 313
Some time back I wrote the below as a visualization aid for 3D arrays. Was also a good learning exercise.
# Python 2.7.10
from __future__ import print_function
from numpy import *
def f_Print3dArray(a_Array):
v_Spacing = (len(str(amax(abs(a_Array)))) + 1) if amin(a_Array)\
< 0 else (len(str(amax(a_Array))) + 1)
for i in a_Array[:,:,::-1].transpose(0,2,1):
for index, j in enumerate(i):
print(" " * (len(i) - 1 - index) + "/ ", end="")
for k in j:
print(str(k).ljust( v_Spacing + 1), end="")
print("/")
print()
a_Array = arange(27).reshape(3, 3, 3)
print(a_Array)
print()
f_Print3dArray(a_Array)
Converts this:
[[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]]
[[ 9 10 11]
[12 13 14]
[15 16 17]]
[[18 19 20]
[21 22 23]
[24 25 26]]]
To this:
/ 2 5 8 /
/ 1 4 7 /
/ 0 3 6 /
/ 11 14 17 /
/ 10 13 16 /
/ 9 12 15 /
/ 20 23 26 /
/ 19 22 25 /
/ 18 21 24 /
Hope it helps someone.
Upvotes: 0
Reputation: 1749
When I have 3D data, I tend to think of it as a 'cube' with rows, columns, and slices - or panels, of 2D images. Each slice or panel is a 2D image that is of dimensions (rows, cols)
. I usually think of it like this:
with (0,0,0)
being in the upper left corner of the front slice. With numpy
indexing it is super easy to select just the portions of the 3D array that you are interested in without writing your own loops:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> np.set_printoptions(precision=2)
# Generate a 3D 'cube' of data
>>> data3D = np.random.uniform(0,10, 2*3*5).reshape((2,3,5))
>>> data3D
array([[[ 7.44, 1.14, 2.5 , 3.3 , 6.05],
[ 1.53, 8.91, 1.63, 8.95, 2.46],
[ 3.57, 3.29, 6.43, 8.81, 6.43]],
[[ 4.67, 2.67, 5.29, 7.69, 7.59],
[ 0.26, 2.88, 7.58, 3.27, 4.55],
[ 5.84, 9.04, 7.16, 9.18, 5.68]]])
# Grab some "views" of the data
>>> front = data3D[:,:,0] # all rows and columns, first slice
>>> back = data3D[:,:,-1] # all rows and cols, last slice
>>> top = data3D[0,:,:] # first row, all cols, all slices
>>> bottom = data3D[-1,:,:] # last row, all cols, all slices
>>> r_side = data3D[:,-1,:] # all rows, last column, all slices
>>> l_side = data3D[:,0,:] # all rows, first column, all slices
See what the front looks like:
>>> plt.imshow(front, interpolation='none')
>>> plt.show()
Upvotes: 6
Reputation: 32511
You can compute it as follows:
>>> data = np.random.random_sample((200, 300, 100)) > 0.5
>>> data.any(axis=-1).shape # show the result has the shape we want
(200, 300)
>>> data.any(axis=-1)
array([[ True, True, True, ..., True, True, True],
[ True, True, True, ..., True, True, True],
[ True, True, True, ..., True, True, True],
...,
[ True, True, True, ..., True, True, True],
[ True, True, True, ..., True, True, True],
[ True, True, True, ..., True, True, True]], dtype=bool)
>>>
You can scale values if you need
>>> data.any(axis=-1) * 255
array([[255, 255, 255, ..., 255, 255, 255],
[255, 255, 255, ..., 255, 255, 255],
[255, 255, 255, ..., 255, 255, 255],
...,
[255, 255, 255, ..., 255, 255, 255],
[255, 255, 255, ..., 255, 255, 255],
[255, 255, 255, ..., 255, 255, 255]])
>>>
Upvotes: 1