Reputation: 809
I have a dataframe where one column is a list of groups each of my users belongs to. Something like:
index groups
0 ['a','b','c']
1 ['c']
2 ['b','c','e']
3 ['a','c']
4 ['b','e']
And what I would like to do is create a series of dummy columns to identify which groups each user belongs to in order to run some analyses
index a b c d e
0 1 1 1 0 0
1 0 0 1 0 0
2 0 1 1 0 1
3 1 0 1 0 0
4 0 1 0 0 0
pd.get_dummies(df['groups'])
won't work because that just returns a column for each different list in my column.
The solution needs to be efficient as the dataframe will contain 500,000+ rows.
Upvotes: 75
Views: 37033
Reputation: 139142
Using s
for your df['groups']
:
In [21]: s = pd.Series({0: ['a', 'b', 'c'], 1:['c'], 2: ['b', 'c', 'e'], 3: ['a', 'c'], 4: ['b', 'e'] })
In [22]: s
Out[22]:
0 [a, b, c]
1 [c]
2 [b, c, e]
3 [a, c]
4 [b, e]
dtype: object
This is a possible solution:
In [23]: pd.get_dummies(s.explode()).groupby(level=0).sum()
Out[23]:
a b c e
0 1 1 1 0
1 0 0 1 0
2 0 1 1 1
3 1 0 1 0
4 0 1 0 1
The logic of this is:
.explode()
flattens the series of lists to a series of single values (with the index keeping track of the original row number)pd.get_dummies( )
creating the dummies.groupby(level=0).sum()
for combining the different rows that should be one row (by summing up grouped by the index (level=0
), i.e. the original row number))If this will be efficient enough, I don't know, but in any case, if performance is important, storing lists in a dataframe is not a very good idea.
Since version 0.25, s.explode()
can be used to flatten the Series of lists, instead of the original s.apply(pd.Series).stack()
Since version 1.3.0, using the level keyword in aggregations is deprecated and will be removed from newer versions soon, so is recommended to use df.groupby(level=0).sum()
instead of df.sum(level=0)
Upvotes: 91
Reputation: 17794
You can use explode
and crosstab
:
s = pd.Series([['a', 'b', 'c'], ['c'], ['b', 'c', 'e'], ['a', 'c'], ['b', 'e']])
s = s.explode()
pd.crosstab(s.index, s)
Output:
col_0 a b c e
row_0
0 1 1 1 0
1 0 0 1 0
2 0 1 1 1
3 1 0 1 0
4 0 1 0 1
Upvotes: 1
Reputation: 29992
You can use str.join
to join all elements in list present in series into string and then use str.get_dummies
:
out = df.join(df['groups'].str.join('|').str.get_dummies())
print(out)
groups a b c e
0 [a, b, c] 1 1 1 0
1 [c] 0 0 1 0
2 [b, c, e] 0 1 1 1
3 [a, c] 1 0 1 0
4 [b, e] 0 1 0 1
Upvotes: 2
Reputation: 933
This is even faster:
pd.get_dummies(df['groups'].explode()).sum(level=0)
Using .explode()
instead of .apply(pd.Series).stack()
Comparing with the other solutions:
import timeit
import pandas as pd
setup = '''
import time
import pandas as pd
s = pd.Series({0:['a','b','c'],1:['c'],2:['b','c','e'],3:['a','c'],4:['b','e']})
df = s.rename('groups').to_frame()
'''
m1 = "pd.get_dummies(s.apply(pd.Series).stack()).sum(level=0)"
m2 = "df.groups.apply(lambda x: pd.Series([1] * len(x), index=x)).fillna(0, downcast='infer')"
m3 = "pd.get_dummies(df['groups'].explode()).sum(level=0)"
times = {f"m{i+1}":min(timeit.Timer(m, setup=setup).repeat(7, 1000)) for i, m in enumerate([m1, m2, m3])}
pd.DataFrame([times],index=['ms'])
# m1 m2 m3
# ms 5.586517 3.821662 2.547167
Upvotes: 13
Reputation: 2533
Very fast solution in case you have a large dataframe
Using sklearn.preprocessing.MultiLabelBinarizer
import pandas as pd
from sklearn.preprocessing import MultiLabelBinarizer
df = pd.DataFrame(
{'groups':
[['a','b','c'],
['c'],
['b','c','e'],
['a','c'],
['b','e']]
}, columns=['groups'])
s = df['groups']
mlb = MultiLabelBinarizer()
pd.DataFrame(mlb.fit_transform(s),columns=mlb.classes_, index=df.index)
Result:
a b c e
0 1 1 1 0
1 0 0 1 0
2 0 1 1 1
3 1 0 1 0
4 0 1 0 1
Worked for me and also was suggested here and here
Upvotes: 56
Reputation: 388
Even though this quest was answered, I have a faster solution:
df.groups.apply(lambda x: pd.Series([1] * len(x), index=x)).fillna(0, downcast='infer')
And, in case you have empty groups or NaN
, you could just:
df.loc[df.groups.str.len() > 0].apply(lambda x: pd.Series([1] * len(x), index=x)).fillna(0, downcast='infer')
Inside the lambda, x
is your list, for example ['a', 'b', 'c']
. So pd.Series
will be as follows:
In [2]: pd.Series([1, 1, 1], index=['a', 'b', 'c'])
Out[2]:
a 1
b 1
c 1
dtype: int64
When all pd.Series
comes together, they become pd.DataFrame
and their index
become columns
; missing index
became a column
with NaN
as you can see next:
In [4]: a = pd.Series([1, 1, 1], index=['a', 'b', 'c'])
In [5]: b = pd.Series([1, 1, 1], index=['a', 'b', 'd'])
In [6]: pd.DataFrame([a, b])
Out[6]:
a b c d
0 1.0 1.0 1.0 NaN
1 1.0 1.0 NaN 1.0
Now fillna
fills those NaN
with 0
:
In [7]: pd.DataFrame([a, b]).fillna(0)
Out[7]:
a b c d
0 1.0 1.0 1.0 0.0
1 1.0 1.0 0.0 1.0
And downcast='infer'
is to downcast from float
to int
:
In [11]: pd.DataFrame([a, b]).fillna(0, downcast='infer')
Out[11]:
a b c d
0 1 1 1 0
1 1 1 0 1
PS.: It's not required the use of .fillna(0, downcast='infer')
.
Upvotes: 9