Reputation: 31
I have read a corpus using
file_directory = 'path'
my_corpus = PlaintextCorpusReader(file_directory,'.*',encoding='latin1')
I perform preprocessing
totalwords = my_corpus.words()
docs = [my_corpus.words(f) for f in fids]
docs2 = [[w.lower()for w in doc]for doc in docs]
docs3 = [[w for w in doc if re.search('^[a-z]+$',w)]for doc in docs2]
from nltk.corpus import stopwords
stop_list = stopwords.words('english')
docs4 = [[w for w in doc if w not in stop_list]for doc in docs3]
wordscount = [w for doc in docs4 for w in doc]
fd_dist_total = nltk.FreqDist(wordscount)
print(fd_dist_total.most_common(common_words))
Output Received is
words = [('ubs', 131), ('pacific', 130), ('us', 121), ('credit', 113), ('aum', 108), ('suisse', 102), ('asia', 98), ('arm', 95)]
I would like to know if it is possible to replace 102 values of 'suisse' with 'credit-suisse'. Similarly replace 'asia' with 'asia-pacific'
Expected output --
words = [('credit-suisse', 102), ('credit', 11) , ('pacific', 32), ('asia-pacific', 98)]
I tried using
wordscount1 = [w.replace('asia','asia-pacific').replace('suisse', 'credit-suisse') for w in wordscount]
However i run into obvious errors.
Kindly guide me.
Upvotes: 1
Views: 132
Reputation: 52030
This is rather underspecified as we don't know how to ensure that, for example, count('suisse') >= count('credit')
. Particularly, you want to:
credit minus suisse
pacific minus asia
(the opposite of the first case)You definitively have to clarify that requirement. Maybe are your replacement terms sorted somehow? Anyway, as a starting point:
words = [('ubs', 131), ('pacific', 130), ('us', 121),
('credit', 113), ('aum', 108), ('suisse', 102),
('asia', 98), ('arm', 95)]
d = dict(words)
for terms in (('credit', 'suisse'), ('asia', 'pacific')):
v1 = d.get(terms[1])
if v1:
d['-'.join(terms)] = v1
v0 = d.get(terms[0],0)
d[terms[0]] = v0-v1 # how to handle zero or negative values here ?
# it is unclear if it should be v1-v0 or v0-v1
# or even abs(v0-v1)
from pprint import pprint
pprint(d)
pprint(d.items())
Producing:
sh$ python3 p.py
{'arm': 95,
'asia': -32, # <- notice that value
'asia-pacific': 130,
'aum': 108,
'credit': 11, # <- and this one
'credit-suisse': 102,
'pacific': 130,
'suisse': 102,
'ubs': 131,
'us': 121}
dict_items([('us', 121), ('suisse', 102), ('aum', 108), ('arm', 95),
('asia-pacific', 130), ('ubs', 131), ('asia', -32),
('credit', 11), ('credit-suisse', 102), ('pacific', 130)])
Upvotes: 1