Reputation: 31898
I have a long series like the following:
series = pd.Series([[(1,2)],[(3,5)],[],[(3,5)]])
In [151]: series
Out[151]:
0 [(1, 2)]
1 [(3, 5)]
2 []
3 [(3, 5)]
dtype: object
I want to remove all entries with an empty list. For some reason, boolean indexing does not work.
The following tests both give the same error:
series == [[(1,2)]]
series == [(1,2)]
ValueError: Arrays were different lengths: 4 vs 1
This is very strange, because in the simple example below, indexing works just like above:
In [146]: pd.Series([1,2,3]) == [3]
Out[146]:
0 False
1 False
2 True
dtype: bool
P.S. ideally, I'd like to split the tuples in the series into a DataFrame of two columns also.
Upvotes: 8
Views: 15528
Reputation: 1267
Using the built in apply you can filter by the length of the list:
series = pd.Series([[(1,2)],[(3,5)],[],[(3,5)]])
series = series[series.apply(len) > 0]
Upvotes: 6
Reputation: 879073
Your series
is in a bad state -- having a Series of lists of tuples of ints
buries the useful data, the ints, inside too many layers of containers.
However, to form the desired DataFrame, you could use
df = series.apply(lambda x: pd.Series(x[0]) if x else pd.Series()).dropna()
which yields
0 1
0 1 2
1 3 5
2 3 5
A better way would be to avoid building the malformed series
altogether and
form df
directly from the data:
data = [[(1,2)],[(3,5)],[],[(3,5)]]
data = [pair for row in data for pair in row]
df = pd.DataFrame(data)
Upvotes: 4
Reputation: 176730
You could check to see if the lists are empty using str.len()
:
series.str.len() == 0
and then use this boolean series to remove the rows containing empty lists.
If each of your entries is a list containing a two-tuple (or else empty), you could create a two-column DataFrame by using the str
accessor twice (once to select the first element of the list, then to access the elements of the tuple):
pd.DataFrame({'a': series.str[0].str[0], 'b': series.str[0].str[1]})
Missing entries default to NaN
with this method.
Upvotes: 19