Reputation: 111
I have been having problem with identifying two maximum values' position in 3D matrix (MATLAB). Say I have matrix A
output as follows:
A(:,:,1) =
5 3 5
0 1 0
A(:,:,2) =
0 2 0
8 0 8
A(:,:,3) =
3 0 0
0 7 7
A(:,:,4) =
6 6 0
4 0 0
For the first A(:,:,1)
, I want to identify that the first row have the highest value (A=5)
. But I need the two index position, which in this case, 1
and 3
. And this is the same as the other A(:,:,:)
.
I have searched through SO but since I am bad in MATLAB, I couldn't find way to work this through.
Please do help me on this. It would be better if I don't need to use for loop to get the desired output.
Upvotes: 1
Views: 727
Reputation: 221504
Shot #1 Finding the indices for maximum values across each 3D slice -
%// Reshape A into a 2D matrix
A_2d = reshape(A,[],size(A,3))
%// Find linear indices of maximum numbers for each 3D slice
idx = find(reshape(bsxfun(@eq,A_2d,max(A_2d,[],1)),size(A)))
%// Convert those linear indices to dim1, dim2,dim3 indices and
%// present the final output as a Nx3 array
[dim1_idx,dim2_idx,dim3_idx] = ind2sub(size(A),idx)
out_idx_triplet = [dim1_idx dim2_idx dim3_idx]
Sample run -
>> A
A(:,:,1) =
5 3 5
0 1 0
A(:,:,2) =
0 2 0
8 0 8
A(:,:,3) =
3 0 0
0 7 7
A(:,:,4) =
6 6 0
4 0 0
out_idx_triplet =
1 1 1
1 3 1
2 1 2
2 3 2
2 2 3
2 3 3
1 1 4
1 2 4
out_idx_triplet(:,2)
is what you are looking for!
Shot #2 Finding the indices for highest two numbers across each 3D slice -
%// Get size of A
[m,n,r] = size(A)
%// Reshape A into a 2D matrix
A_2d = reshape(A,[],r)
%// Find linear indices of highest two numbers for each 3D slice
[~,sorted_idx] = sort(A_2d,1,'descend')
idx = bsxfun(@plus,sorted_idx(1:2,:),[0:r-1]*m*n)
%// Convert those linear indices to dim1, dim2,dim3 indices
[dim1_idx,dim2_idx,dim3_idx] = ind2sub(size(A),idx(:))
%// Present the final output as a Nx3 array
out_idx_triplet = [dim1_idx dim2_idx dim3_idx]
out_idx_triplet(:,2)
is what you are looking for!
Upvotes: 2
Reputation: 2334
The following code gives you the column and row of the respective maximum.
The first step will obtain the maximum of each sub-matrix containing the first and second dimension. Since max works per default with the first dimension, the matrix is reshaped to combine the original first and second dimension.
max_vals = max(reshape(A,size(A,1)*size(A,2),size(A,3)));
max_vals =
5 8 7 6
In the second step, the index of elements equal to the respective max_vals
of each sub-matrix is obtained using arrayfun
over the third dimension. Since the output of arrayfun
are cells, cell2mat
is used to transform the output into a matrix. As a last step, the linear index from find
is transformed into sub-indices by ind2sub
.
[i,j] = ind2sub(size(A(:,:,1)),cell2mat(arrayfun(@(i)find(A(:,:,i)==max_vals(i)),1:size(A,3),'UniformOutput',false)))
i =
1 2 2 1
1 2 2 1
j =
1 1 2 1
3 3 3 2
Hence, the values in j
are the ones you want to have.
Upvotes: 1