Reputation: 3635
I am having strange issues with dplyr and combination of group_by, mutate and ifelse. Consider the following data.frame
df1 <- data.frame(
crawl.id = c(1, 1, 2, 1, 1, 1),
group.id = factor(c("1", "2", "2", "3", "3", "3")),
hits.diff = c(NA, NA, 0, NA, NA, NA)
)
df1
#> crawl.id group.id hits.diff
#> 1 1 1 NA
#> 2 1 2 NA
#> 3 2 2 0
#> 4 1 3 NA
#> 5 1 3 NA
#> 6 1 3 NA
When I use it the following code
library(dplyr)
df1 %>%
group_by(group.id) %>%
mutate( hits.consumed = ifelse(hits.diff<=0,-hits.diff,0) )
For some reason I get
Error: incompatible types, expecting a logical vector**
However, removing either group_by()
or ifelse
everything works as expected:
df1 %>%
mutate( hits.consumed = ifelse(hits.diff<=0,-hits.diff,0) )
crawl.id group.id hits.diff hits.consumed
1 1 1 NA NA
2 1 2 NA NA
3 2 2 0 0
4 1 3 NA NA
5 1 3 NA NA
6 1 3 NA NA
df1 %>%
group_by( group.id ) %>%
mutate( hits.consumed = -hits.diff )
crawl.id group.id hits.diff hits.consumed
1 1 1 NA NA
2 1 2 NA NA
3 2 2 0 0
4 1 3 NA NA
5 1 3 NA NA
6 1 3 NA NA
Is it a bug or a feature? Can anyone replicate this? What's so special about that specific combination of group_by, mutate and ifelse that makes it fail?
My own research led me here: https://github.com/hadley/dplyr/issues/464 which suggests that it should be fixed by now.
Upvotes: 21
Views: 4800
Reputation: 93813
Wrap it all in as.numeric
to force the output format so the NA
s, which are logical
by default, don't override the class of the output variable:
df1 %>%
group_by(group.id) %>%
mutate( hits.consumed = as.numeric(ifelse(hits.diff<=0,-hits.diff,0)) )
# crawl.id group.id hits.diff hits.consumed
#1 1 1 NA NA
#2 1 2 NA NA
#3 2 2 0 0
#4 1 3 NA NA
#5 1 3 NA NA
#6 1 3 NA NA
Pretty sure this is the same issue as here: Custom sum function in dplyr returns inconsistent results , as this result suggests:
out <- df1[1:2,] %>% mutate( hits.consumed = ifelse(hits.diff <= 0, -hits.diff, 0))
class(out$hits.consumed)
#[1] "logical"
out <- df1[1:3,] %>% mutate( hits.consumed = ifelse(hits.diff <= 0, -hits.diff, 0))
class(out$hits.consumed)
#[1] "numeric"
Upvotes: 33