Reputation: 3
I have a matrix of data for a natural language processing course and I need to Euclidean normalize the matrix, I am very new to R
so I cannot figure out what I am doing wrong with my code, heres the code:
A=matrix(
c(1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,1,0,0,1,2,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1),
nrow=11,
ncol=10)
norm_vec <- function(x) sqrt(sum(x^2))
B=matrix(
nrow=11,
ncol=10)
for(n in 1:10)
length <- norm_vec(A[,n])
for(j in 1:11)
B[j,n]<- A[j,n]/length
For this I get an output of only the last column being correct the other columns being NA
and I do not understand why this is so. What am I doing wrong?
Upvotes: 0
Views: 1345
Reputation: 4473
@Sathish's solution can go fully vectorized
A / matrix(sqrt(colSums(A*A)), nrow=11, ncol=10, byrow=TRUE)
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#[1,] 0.5773503 0.0 0.0000000 0.4082483 0.5773503 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#[2,] 0.5773503 0.5 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#[3,] 0.5773503 0.5 0.5773503 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#[4,] 0.0000000 0.5 0.0000000 0.4082483 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#[5,] 0.0000000 0.5 0.0000000 0.8164966 0.5773503 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#[6,] 0.0000000 0.0 0.5773503 0.0000000 0.5773503 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#[7,] 0.0000000 0.0 0.5773503 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7071068
#[8,] 0.0000000 0.0 0.0000000 0.0000000 0.0000000 0.7071068 0.0000000 0.0000000 0.0000000 0.0000000
#[9,] 0.0000000 0.0 0.0000000 0.0000000 0.0000000 0.7071068 0.7071068 0.5773503 0.7071068 0.0000000
#[10,] 0.0000000 0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.7071068 0.5773503 0.0000000 0.0000000
#[11,] 0.0000000 0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.5773503 0.7071068 0.7071068
Upvotes: 2
Reputation: 12723
A=matrix(c(1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,1,0,0,1,2,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1), nrow=11, ncol=10)
norm_vec <- function(x){
sqrt(sum(x^2))
}
B=matrix(nrow=11, ncol=10)
Euc.lenA <- c()
for(n in 1:10){
Euc.lenA <- c(Euc.lenA, norm_vec(A[,n]))
}
for(j in 1:10){
B[,j]<- A[,j]/Euc.lenA[j]
}
Euc.lenA
[1] 1.732051 2.000000 1.732051 2.449490 1.732051 1.414214 1.414214 1.732051 1.414214 1.414214
Upvotes: 0