Reputation: 26419
This is not a homework.
I'm using a small "priority queue" (implemented as array at the moment) for storing last N items with smallest value. This is a bit slow - O(N) item insertion time. Current implementation keeps track of largest item in array and discards any items that wouldn't fit into array, but I still would like to reduce number of operations further.
looking for a priority queue algorithm that matches following requirements:
I initially thought about using binary heaps (they can be easily implemented via arrays), but apparently they don't behave well when array can't grow anymore. Linked lists and arrays will require extra time for moving things around. stl priority queue grows and uses dynamic allocation (I may be wrong about it, though).
So, any other ideas?
--EDIT--
I'm not interested in STL implementation. STL implementation (suggested by a few people) works a bit slower than currently used linear array due to high number of function calls.
I'm interested in priority queue algorithms, not implemnetations.
Upvotes: 13
Views: 10293
Reputation: 31
It's better to implement your own class using std::array and heap algorithms.
`template<class T, int fixed_size = 5>
class fixed_size_arr_pqueue_v2
{
std::array<T, fixed_size> _data;
int _size = 0;
int parent(int i)
{
return (i - 1)/2;
}
void heapify(int i, bool downward = false)
{
int l = 2*i + 1;
int r = 2*i + 2;
int largest = 0;
if (l < size() && _data[l] > _data[i])
largest = l;
else
largest = i;
if (r < size() && _data[r] > _data[largest])
largest = r;
if (largest != i)
{
std::swap(_data[largest], _data[i]);
if (!downward)
heapify(parent(i));
else
heapify(largest, true);
}
}
public:
void push(T &d)
{
if (_size == fixed_size)
{
//min elements in a max heap lies at leaves only.
auto minItr = std::min_element(begin(_data) + _size/2, end(_data));
auto minPos {minItr - _data.begin()};
auto min { *minItr};
if (d > min)
{
_data.at(minPos) = d;
if (_data[parent(minPos)] > d)
{
//this is unlikely to happen in our case? as this position is a leaf?
heapify(minPos, true);
}
else
heapify(parent(minPos));
}
return ;
}
_data.at(_size++) = d;
std::push_heap(_data.begin(), _data.begin() + _size);
}
T pop()
{
T d = _data.front();
std::pop_heap(_data.begin(), _data.begin() + _size);
_size--;
return d;
}
T top()
{
return _data.front();
}
int size() const
{
return _size;
}
};`
Upvotes: 0
Reputation: 26419
Found a solution ("difference" means "priority" in the code, and maxRememberedResults is 255 (could be any (2^n - 1)):
template <typename T> inline void swap(T& a, T& b){
T c = a;
a = b;
b = c;
}
struct MinDifferenceArray{
enum{maxSize = maxRememberedResults};
int size;
DifferenceData data[maxSize];
void add(const DifferenceData& val){
if (size >= maxSize){
if(data[0].difference <= val.difference)
return;
data[0] = val;
for (int i = 0; (2*i+1) < maxSize; ){
int next = 2*i + 1;
if (data[next].difference < data[next+1].difference)
next++;
if (data[i].difference < data[next].difference)
swap(data[i], data[next]);
else
break;
i = next;
}
}
else{
data[size++] = val;
for (int i = size - 1; i > 0;){
int parent = (i-1)/2;
if (data[parent].difference < data[i].difference){
swap(data[parent], data[i]);
i = parent;
}
else
break;
}
}
}
void clear(){
size = 0;
}
MinDifferenceArray()
:size(0){
}
};
And we get O(log(N)) insert as a worst case scenario.
It is the same solution as the one provided by user with nickname "Moron". Thanks to everyone for replies.
P.S. Apparently programming without sleeping enough wasn't a good idea.
Upvotes: 0
Reputation:
Array based heaps seem ideal for your purpose. I am not sure why you rejected them.
You use a max-heap.
Say you have an N element heap (implemented as an array) which contains the N smallest elements seen so far.
When an element comes in you check against the max (O(1) time), and reject if it is greater.
If the value coming in is lower, you modify the root to be the new value and sift-down this changed value - worst case O(log N) time.
The sift-down process is simple: Starting at root, at each step you exchange this value with it's larger child until the max-heap property is restored.
So, you will not have to do any deletes which you probably will have to, if you use std::priority_queue. Depending on the implementation of std::priority_queue, this could cause memory allocation/deallocation.
So you can have the code as follows:
On an average, though, you probably will not have to sift-down the new value all the way down and might get better than O(logn) average insert time (though I haven't tried proving it).
You only allocate size N array once and any insertion is done by exchanging elements of the array, so there is no dynamic memory allocation after that.
Check out the wiki page which has pseudo code for heapify and sift-down: http://en.wikipedia.org/wiki/Heapsort
Upvotes: 19
Reputation: 62185
Matters Computational see page 158. The implementation itself is quite well, and you can even tweak it a little without making it less readable. For example, when you compute the left child like:
int left = i / 2;
You can compute the rightchild like so:
int right = left + 1;
Upvotes: 0
Reputation: 14057
Most priority queues I work are based on linked lists. If you have a pre-determined number of priority levels, you can easily create a priority queue with O(1) insertion by having an array of linked lists--one linked list per priority level. Items of the same priority will of course degenerate into either a FIFO, but that can be considered acceptable.
Adding and removal then becomes something like (your API may vary) ...
listItemAdd (&list[priLevel], &item); /* Add to tail */
pItem = listItemRemove (&list[priLevel]); /* Remove from head */
Getting the first item in the queue then becomes a problem of finding the non-empty linked-list with the highest priority. That may be O(N), but there are several tricks you can use to speed it up.
Hope this helps.
Upvotes: 1
Reputation: 1333
If you construct an STL priority queue at the maximum size (perhaps from a vector initialized with placeholders), and then check the size before inserting (removing an item if necessary beforehand) you'll never have dynamic allocation during insert operations. The STL implementation is quite efficient.
Upvotes: 0
Reputation: 13223
If amount of priorities is small and fixed than you can use ring-buffer for each priority. That will lead to waste of the space if objects is big, but if their size is comparable with pointer/index than variants with storing additional pointers in objects may increase size of array in the same way.
Or you can use simple single-linked list inside array and store 2*M+1 pointers/indexes, one will point to first free node and other pairs will point to head and tail of each priority. In that cases you'll have to compare in avg. O(M) before taking out next node with O(1). And insertion will take O(1).
Upvotes: 0
Reputation: 185862
Use std::priority_queue
with the largest item at the head. For each new item, discard it if it is >=
the head item, otherwise pop the head item and insert the new item.
Side note: Standard containers will only grow if you make them grow. As long as you remove one item before inserting a new item (after it reaches its maximum size, of course), this won't happen.
Upvotes: 8