Reputation: 827
Right now I have two dataframes. One contains over 11 million rows of a start date, end date, and other variables. The second dataframe contains daily values for heating degree days (basically a temperature measure).
set.seed(1)
library(lubridate)
date.range <- ymd(paste(2008,3,1:31,sep="-"))
daily <- data.frame(date=date.range,value=runif(31,min=0,max=45))
intervals <- data.frame(start=daily$date[1:5],end=daily$date[c(6,9,15,24,31)])
In reality my daily dataframe has every day for 9 years and my intervals dataframe has entries that span over arbitrary dates in this time period. What I wanted to do was to add a column to my intervals
dataframe called nhdd
that summed over the values in daily corresponding to that time interval (end exclusive).
For example, in this case the first entry of this new column would be
sum(daily$value[1:5])
and the second would be
sum(daily$value[2:8]) and so on.
I tried using the following code
intervals <- mutate(intervals,nhdd=sum(filter(daily,date>=start&date<end)$value))
This is not working and I think it might have something to do with not referencing the columns correctly but I'm not sure where to go.
I'd really like to use dplyr
to solve this and not a loop because 11 million rows will take long enough using dplyr. I tried using more of lubridate
but dplyr doesn't seem to support the Period class.
Edit: I'm actually using dates from as.Date
now instead of lubridate
but the basic question of how to refer to a different dataframe from within mutate
still stands
Upvotes: 0
Views: 3993
Reputation: 7373
eps <- .Machine$double.eps
library(dplyr)
intervals %>%
rowwise() %>%
mutate(nhdd = sum(daily$value[between(daily$date, start, end - eps )]))
# start end nhdd
#1 2008-03-01 2008-03-06 144.8444
#2 2008-03-02 2008-03-09 233.4530
#3 2008-03-03 2008-03-15 319.5452
#4 2008-03-04 2008-03-24 531.7620
#5 2008-03-05 2008-03-31 614.2481
In case if you find dplyr
solution bit slow (basically due torowwise
), you might want to use data.table
for pure speed
library(data.table)
setkey(setDT(intervals), start, end)
setDT(daily)[, date1 := date]
foverlaps(daily, by.x = c("date", "date1"), intervals)[, sum(value), by=c("start", "end")]
# start end V1
#1: 2008-03-01 2008-03-06 144.8444
#2: 2008-03-02 2008-03-09 233.4530
#3: 2008-03-03 2008-03-15 319.5452
#4: 2008-03-04 2008-03-24 531.7620
#5: 2008-03-05 2008-03-31 614.2481
Upvotes: 4