Reputation:
I have a small histogram program on Python, I want to use Pillow library instead of cv2.
from PIL import Image
import cv2
import matplotlib.pyplot as plt
im = cv2.imread('pic.jpg')
im.ndim == 3:
# Input image is three channels
fig = plt.figure()
fig.add_subplot(311)
plt.hist(im[...,0].flatten(), 256, range=(0, 250), fc='b')
fig.add_subplot(312)
plt.hist(im[...,1].flatten(), 256, range=(0, 250), fc='g')
fig.add_subplot(313)
plt.hist(im[...,2].flatten(), 256, range=(0, 250), fc='r')
plt.show()
I can replace im = cv2.imread('pic.jpg') to im = Image.open('pic.jpg') and im.ndim to im.getbands(), but what can i do with im[...,0].flatten()?
Upvotes: 1
Views: 8712
Reputation: 3104
This is how to get pixel values (from 0 to 255) of an image using pillow:
from PIL import Image # import library
import numpy as np # import library
img = Image.open('myImage.png') # use Image.open(image_location)
image_data = np.array(img) # to convert img object to array value use np.array
print(image_data) # now, print all the pixel values of image in np array
Upvotes: 0
Reputation: 12711
In Python opencv uses numpy arrays as data structures for images. So cv2.imread
returns a numpy array.
Matplotlib has a similar function, so for the example in your question you need neither opencv nor pil:
import matplotlib.pyplot as plt
im = plt.imread('pic.jpg')
if im.shape[2] == 3:
# Input image is three channels
fig = plt.figure()
fig.add_subplot(311)
plt.hist(im[...,0].flatten(), 256, range=(0, 250), fc='b')
fig.add_subplot(312)
plt.hist(im[...,1].flatten(), 256, range=(0, 250), fc='g')
fig.add_subplot(313)
plt.hist(im[...,2].flatten(), 256, range=(0, 250), fc='r')
plt.show()
If you have to use PIL to load the image, then you can convert it to a numpy array before plotting:
from PIL import Image
import numpy as np
im = np.array(Image.open('pic.jpg'))
Upvotes: 3