Reputation: 999
I have a dataframe with several columns, with each column having some positive, negative and zero values. For each column, I want to calculate x+y, where x and y are mean and standard deviation of absolute non-zero values of each column. How to do this in python?
Upvotes: 1
Views: 2440
Reputation: 599
I was looking for an answer to a similar question but to produce a mean etc on nonzero items.
After playing around for a while the answer was quite simple:
In [3]: df = pd.DataFrame({'a':np.random.randint(-5,5,10), 'b':np.random.randint(-5,5,10), 'c':np.random.randint(-5,5,10)})
In [4]: df
Out[4]:
a b c
0 3 -5 -2
1 0 -2 1
2 -1 1 -4
3 -3 0 -4
4 -5 -3 0
5 -1 4 1
6 0 -5 -4
7 2 0 -5
8 4 0 2
9 -1 1 -4
In [5]: df[df <> 0].describe() # or use .mean() etc.
Out[5]:
a b c
count 8.000000 7.000000 9.000000
mean -0.250000 -1.285714 -2.111111
std 3.058945 3.401680 2.713137
min -5.000000 -5.000000 -5.000000
25% -1.500000 -4.000000 -4.000000
50% -1.000000 -2.000000 -4.000000
75% 2.250000 1.000000 1.000000
max 4.000000 4.000000 2.000000
I also needed the mean for timeseries data but to ignore zero values (response times) and found another solution;
In [6]: df = pd.DataFrame({'a':np.random.randint(0,5,5), 'b':np.random.randint(0,5,5), 'c':np.random.randint(0,5,5)})
In [7]: df['Time'] = pd.date_range('2015/01/01',periods=5)
In [8]: df2 = pd.DataFrame({'a':np.random.randint(0,5,5), 'b':np.random.randint(0,5,5), 'c':np.random.randint(0,5,5)})
In [9]: df2['Time'] = pd.date_range('2015/01/01',periods=5)
In [10]: df=pd.concat([df,df2]).set_index('Time').sort_index()
In [11]: df
Out[11]:
a b c
Time
2015-01-01 0 0 1
2015-01-01 4 3 3
2015-01-02 2 3 4
2015-01-02 3 0 4
2015-01-03 3 4 4
2015-01-03 1 1 3
2015-01-04 4 2 2
2015-01-04 3 1 2
2015-01-05 3 2 0
2015-01-05 2 2 1
In [12]: df[df<>0].groupby(df.index).mean()
Out[12]:
a b c
Time
2015-01-01 4.0 3.0 2.0
2015-01-02 2.5 3.0 4.0
2015-01-03 2.0 2.5 3.5
2015-01-04 3.5 1.5 2.0
2015-01-05 2.5 2.0 1.0
Note if all items in the same time are zero the mean evaluates as Nan.
Upvotes: 1
Reputation: 394041
You can filter the df using a boolean condition and then iterate over the cols and call describe
and access the mean and std columns:
In [103]:
df = pd.DataFrame({'a':np.random.randn(10), 'b':np.random.randn(10), 'c':np.random.randn(10)})
df
Out[103]:
a b c
0 0.566926 -1.103313 -0.834149
1 -0.183890 -0.222727 -0.915141
2 0.340611 -0.278525 -0.992135
3 0.380519 -1.546856 0.801598
4 -0.596142 0.494078 -0.423959
5 -0.064408 0.475466 0.220138
6 -0.549479 1.453362 2.696673
7 1.279865 0.796222 0.391247
8 0.778623 1.033530 1.264428
9 -1.669838 -1.117719 0.761952
In [111]:
for col in df[df>0]:
print('col:', col, df[col].describe()[['mean','std']])
col: a mean 0.028279
std 0.836804
Name: a, dtype: float64
col: b mean -0.001648
std 1.014950
Name: b, dtype: float64
col: c mean 0.297065
std 1.159999
Name: c, dtype: float64
Upvotes: 1