Reputation: 20101
I have a data frame as follows:
value identifier
2007-01-01 0.781611 55
2007-01-01 0.766152 56
2007-01-01 0.766152 57
2007-02-01 0.705615 55
2007-02-01 0.032134 56
2007-02-01 0.032134 57
2008-01-01 0.026512 55
2008-01-01 0.993124 56
2008-01-01 0.993124 57
2008-02-01 0.226420 55
2008-02-01 0.033860 56
2008-02-01 0.033860 57
How can I aggregate by the value in the identifier column, like this:
value
2007-01-01 0.766 # (average of identifiers 55, 56 and 57 for this date)
2007-02-01 0.25
2008-01-01 etc...
2008-02-01
Upvotes: 1
Views: 1389
Reputation: 394091
If your index is a datetime then you can access the .date
attribute, if not you can convert it using df.index = pd.to_datetime(df.index)
and then perform a groupby on the date and calc the mean:
In [214]:
df.groupby(df.index.date)['value'].mean()
Out[214]:
2007-01-01 0.771305
2007-02-01 0.256628
2008-01-01 0.670920
2008-02-01 0.098047
Name: value, dtype: float64
Upvotes: 1