Reputation: 5198
Im trying to build a Bison grammar and seem to be missing something. I kept it yet very basic, still I am getting a syntax error and can't figure out why:
Here is my Bison Code:
%{
#include <stdlib.h>
#include <stdio.h>
int yylex(void);
int yyerror(char *s);
%}
// Define the types flex could return
%union {
long lval;
char *sval;
}
// Define the terminal symbol token types
%token <sval> IDENT;
%token <lval> NUM;
%%
Program:
Def ';'
;
Def:
IDENT '=' Lambda { printf("Successfully parsed file"); }
;
Lambda:
"fun" IDENT "->" "end"
;
%%
main() {
yyparse();
return 0;
}
int yyerror(char *s)
{
extern int yylineno; // defined and maintained in flex.flex
extern char *yytext; // defined and maintained in flex.flex
printf("ERROR: %s at symbol \"%s\" on line %i", s, yytext, yylineno);
exit(2);
}
Here is my Flex Code
%{
#include <stdlib.h>
#include "bison.tab.h"
%}
ID [A-Za-z][A-Za-z0-9]*
NUM [0-9][0-9]*
HEX [$][A-Fa-f0-9]+
COMM [/][/].*$
%%
fun|if|then|else|let|in|not|head|tail|and|end|isnum|islist|isfun {
printf("Scanning a keyword\n");
}
{ID} {
printf("Scanning an IDENT\n");
yylval.sval = strdup( yytext );
return IDENT;
}
{NUM} {
printf("Scanning a NUM\n");
/* Convert into long to loose leading zeros */
char *ptr = NULL;
long num = strtol(yytext, &ptr, 10);
if( errno == ERANGE ) {
printf("Number was to big");
exit(1);
}
yylval.lval = num;
return NUM;
}
{HEX} {
printf("Scanning a NUM\n");
char *ptr = NULL;
/* convert hex into decimal using offset 1 because of the $ */
long num = strtol(&yytext[1], &ptr, 16);
if( errno == ERANGE ) {
printf("Number was to big");
exit(1);
}
yylval.lval = num;
return NUM;
}
";"|"="|"+"|"-"|"*"|"."|"<"|"="|"("|")"|"->" {
printf("Scanning an operator\n");
}
[ \t\n]+ /* eat up whitespace */
{COMM}* /* eat up one-line comments */
. {
printf("Unrecognized character: %s at linenumber %d\n", yytext, yylineno );
exit(1);
}
%%
And here is my Makefile:
all: parser
parser: bison flex
gcc bison.tab.c lex.yy.c -o parser -lfl
bison: bison.y
bison -d bison.y
flex: flex.flex
flex flex.flex
clean:
rm bison.tab.h
rm bison.tab.c
rm lex.yy.c
rm parser
Everything compiles just fine, I do not get any errors runnin make all.
Here is my testfile
f = fun x -> end;
And here is the output:
./parser < a0.0
Scanning an IDENT
Scanning an operator
Scanning a keyword
Scanning an IDENT
ERROR: syntax error at symbol "x" on line 1
since x seems to be recognized as a IDENT the rule should be correct, still I am gettin an syntax error.
I feel like I am missing something important, hopefully somebody can help me out.
Thanks in advance!
EDIT:
I tried to remove the IDENT
in the Lambda rule and the testfile, now it seems to run through the line, but still throws
ERROR: syntax error at symbol "" on line 1
after the EOF.
Upvotes: 3
Views: 1565
Reputation: 241931
Your scanner recognizes keywords (and prints out a debugging line, but see below), but it doesn't bother reporting anything to the parser. So they are effectively ignored.
In your bison definition file, you use (for example) "fun" as a terminal, but you do not provide the terminal with a name which could be used in the scanner. The scanner needs this name, because it has to return a token id to the parser.
To summarize, what you need is something like this:
In your grammar, before the %%
:
token T_FUN "fun"
token T_IF "if"
token T_THEN "then"
/* Etc. */
In your scanner definition:
fun { return T_FUN; }
if { return T_IF; }
then { return T_THEN; }
/* Etc. */
A couple of other notes:
Your scanner rule for recognizing operators also fails to return anything, so operators will also be ignored. That's clearly not desirable. flex and bison allow an easier solution for single-character operators, which is to let the character be its own token id. That avoids having to create a token name. In the parser, a single-quoted character represents a token-id whose value is the character; that's quite different from a double-quoted string, which is an alias for the declared token name. So you could do this:
"=" { return '='; }
/* Etc. */
but it's easier to do all the single-character tokens at once:
[;+*.<=()-] { return yytext[0]; }
and even easier to use a default rule at the end:
. { return yytext[0]; }
which will have the effect of handling unrecognized characters by returning an unknown token id to the parser, which will cause a syntax error.
This won't work for "->", since that is not a single character token, which will have to be handled in the same way as keywords.
Flex will produce debugging output automatically if you use the -d
flag when you create the scanner. That's a lot easier than inserting your own debugging printout, because you can turn it off by simply removing the -d
option. (You can use %option debug
instead if you don't want to change the flex invocation in your makefile.) It's also better because it provides consistent information, including position information.
Some minor points:
[0-9][0-9]*
could more easily be written [0-9]+
"//".*
does not require a $
lookahead at the end, since .*
will always match the longest sequence of non-newline characters; consequently, the first unmatched character must either be a newline or the EOF. $
lookahead will not match if the pattern is terminated with an EOF, which will cause odd errors if the file ends with a comment without a newline at the end.{COMM}*
since the comment pattern does not match the newline which terminates the comment, so it is impossible for there to be two consecutive comment matches. But anyway, after matching a comment and the following newline, flex will continue to match a following comment, so {COMM}
is sufficient. (Personally, I wouldn't use the COMM
abbreviation; it really adds nothing to readability, IMHO.)Upvotes: 5