Reputation: 577
Fairly new to text classification.
There are 11-12 classes that a document can belong to. I want to see all thee probability/measure for all possible classes to which the document belongs to.
The data i have can have noise. There are classes like. 'Dell' and 'Dell notebooks'
I am using the k-Nearest Neighbour Classification using R.
Bag of words to featurise the document.
Edit: What i am looking for is what 'predict' gives us with type
library(class)
library(e1071)
data(iris)
train.idx <- sample(nrow(iris),ceiling(nrow(iris)*0.7))
test.idx <-(1:nrow(iris)) [- train.idx]
data.var <- iris[,1:4]
data.class<-iris[,5]
classifier<-naiveBayes(data.var[train.idx,], data.class[train.idx])
predict(classifier, data.var[test.idx,],type="raw")
This will give a table that shows the probability of each class possible. I want to generate a similar table.
Upvotes: 1
Views: 1047
Reputation: 37889
I will use the iris3
data because I find it easier to work with. It is exactly the same data set as iris
:
You need the KODAMA
package and the function knn.probability
to get what you want. See the following example:
data(iris3)
#every 25 rows belong to a specific type of flower
train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
#50-50 split on this ocassion
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
#first 25 rows are setosa, next 25 versicolor, and the last 25 virginica
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
#In order to get probabilities for all 3 classes you need the following library
library(KODAMA)
#rbind the train and test sets
x <- rbind(train,test)
#calculate the distances among rows (necessary step)
kdist <- knn.dist(x)
#calculate and
# view probabilities (all class probabilities are returned)
#you just pass in the indices as you see for the training and test sets
#first 75 rows is the train set, second 75 rows is the test set
probs <- knn.probability(1:75, 76:150, cl, kdist, k=3)
#I prefer the transposed result more to be honest
head(t(probs),10)
And this is the output for each row in the test set:
> head(t(probs),30)
c s v
76 0.0000000 1 0.0000000
77 0.0000000 1 0.0000000
78 0.0000000 1 0.0000000
79 0.0000000 1 0.0000000
80 0.0000000 1 0.0000000
81 0.0000000 1 0.0000000
82 0.0000000 1 0.0000000
83 0.0000000 1 0.0000000
84 0.0000000 1 0.0000000
85 0.0000000 1 0.0000000
86 0.0000000 1 0.0000000
87 0.0000000 1 0.0000000
88 0.0000000 1 0.0000000
89 0.0000000 1 0.0000000
90 0.0000000 1 0.0000000
91 0.0000000 1 0.0000000
92 0.0000000 1 0.0000000
93 0.0000000 1 0.0000000
94 0.0000000 1 0.0000000
95 0.0000000 1 0.0000000
96 0.0000000 1 0.0000000
97 0.0000000 1 0.0000000
98 0.0000000 1 0.0000000
99 0.0000000 1 0.0000000
100 0.0000000 1 0.0000000
101 1.0000000 0 0.0000000
102 1.0000000 0 0.0000000
103 0.3333333 0 0.6666667
104 1.0000000 0 0.0000000
105 1.0000000 0 0.0000000
Upvotes: 2