Reputation: 958
I could not find an answer to my question using the search function here nor on Google.
I have a data frame (500 columns wide, 200.000 rows long) with multiple rows per person. Each cell (except for the first column which has a person ID) contains a 0 or a 1. I am looking for a way to reduce this data frame to 1 row per person, in which I take the maximum for each column by person.
I know that I could use ddply, or data.table... like below...
tt <-data.frame(person=c(1,1,1,2,2,2,3,3,3), col1=c(0,0,1,1,1,0,0,0,0),col2=c(1, 1, 0, 0, 0, 0, 1 ,0 ,1))
library(plyr)
ddply(tt, .(person), summarize, col1=max(col1), col2=max(col2))
person col1 col2
1 1 1
2 1 0
3 0 1
But I don't want to be specifying each of my column names because 1) I have 500 and 2) on a new data set they might be different.
Upvotes: 2
Views: 937
Reputation: 887681
Or use data.table
.
library(data.table)
setDT(tt)[, lapply(.SD, max), person]
# person col1 col2
#1: 1 1 1
#2: 2 1 0
#3: 3 0 1
Upvotes: 3
Reputation: 1417
Below is another trial just using l(s)apply()
.
t(sapply(unique(tt$person), function(x) lapply(tt[tt$person==x,], max)))
person col1 col2
[1,] 1 1 1
[2,] 2 1 0
[3,] 3 0 1
Upvotes: 0
Reputation: 206456
Use the summarise_each
function from dplyr
library(dplyr)
tt %>% group_by(person) %>% summarise_each(funs(max))
# person col1 col2
# 1 1 1 1
# 2 2 1 0
# 3 3 0 1
or just the base aggregate
function
aggregate(.~person, tt, max)
# person col1 col2
# 1 1 1 1
# 2 2 1 0
# 3 3 0 1
Upvotes: 5