Reputation: 4610
I have a linear program with order N^4 variables and order N^4 constraints. If I want to solve this in AMPL, I define the constraints one by one without having to bother about the exact coefficient matrices. No memory issues arises. When using the standard LP-solver in Matlab however, I need to define the matrices explicitly.
When I have variables with four subscripts, this will lead to a massively sparse matrix of dimension order N^4 x N^4. This matrix won't even fit in memory for non trivial problem sizes.
Is there a way to get around this problem using Matlab, apart from various column generation/cutting plane techniques? Since AMPL manages to solve it, I suppose they're either automating some kind of decomposition, or they somehow solve the LP without explicitly working with this sparse monster matrix.
Upvotes: 1
Views: 203