Reputation: 10538
I have a data frame:
zz <- "Product Quarter Million
AAA 2013-Q3 81.1
AAA 2013-Q4 50.5
AAA 2014-Q1 81.9
AAA 2014-Q4 78.3
BBB 2013-Q3 29.9
BBB 2013-Q4 17
BBB 2014-Q3 87.4
BBB 2014-Q4 63
CCC 2013-Q4 41.1
CCC 2014-Q1 59.1
CCC 2014-Q2 110.7
CCC 2014-Q3 127"
df <- read.table(text = zz, header = TRUE); rm(zz)
With observations that span:
2013-Q3 2013-Q4 2014-Q1 2014-Q2 2014-Q3 2014-Q4
Except, most Products
have missing time observations.
I need the missing periods to be inserted as zeros:
Product Quarter Million
AAA 2013-Q3 81.1
AAA 2013-Q4 50.5
AAA 2014-Q1 81.9
AAA 2014-Q2 0
AAA 2014-Q3 0
AAA 2014-Q4 78.3
BBB 2013-Q3 29.9
BBB 2013-Q4 0
BBB 2014-Q1 0
BBB 2014-Q2 0
BBB 2014-Q3 87.4
BBB 2014-Q4 63
CCC 2013-Q3 0
CCC 2013-Q4 41.1
CCC 2014-Q1 59.1
CCC 2014-Q2 110.7
CCC 2014-Q3 127
CCC 2014-Q4 0
Upvotes: 0
Views: 84
Reputation: 269714
Both solutions below assume that each quarter appears in at least one product as is the case in the question:
1) xtabs This solution requires no packages:
xt <- xtabs(Million ~ Quarter + Product, df)
as.data.frame(xt, responseName = "Million")[c(2, 1, 3)]
Product Quarter Million
1 AAA 2013-Q3 81.1
2 AAA 2013-Q4 50.5
3 AAA 2014-Q1 81.9
4 AAA 2014-Q2 0.0
5 AAA 2014-Q3 0.0
6 AAA 2014-Q4 78.3
7 BBB 2013-Q3 29.9
8 BBB 2013-Q4 17.0
9 BBB 2014-Q1 0.0
10 BBB 2014-Q2 0.0
11 BBB 2014-Q3 87.4
12 BBB 2014-Q4 63.0
13 CCC 2013-Q3 0.0
14 CCC 2013-Q4 41.1
15 CCC 2014-Q1 59.1
16 CCC 2014-Q2 110.7
17 CCC 2014-Q3 127.0
18 CCC 2014-Q4 0.0
If the column order and column names do not have to be exactly as in the question then it can be shortened to:
as.data.frame(xtabs(Million ~ Quarter + Product, df))
If wide form is OK then it can be shortened further to:
xtabs(Million ~ Quarter + Product, df)
giving:
Product
Quarter AAA BBB CCC
2013-Q3 81.1 29.9 0.0
2013-Q4 50.5 17.0 41.1
2014-Q1 81.9 0.0 59.1
2014-Q2 0.0 0.0 110.7
2014-Q3 0.0 87.4 127.0
2014-Q4 78.3 63.0 0.0
2) zoo Convert df
to a zoo object z
and then replace the each NA
with zero and use fortify.zoo
with the melt=TRUE
argument to convert it back to long form.
library(zoo)
z <- read.zoo(df, index = 2, FUN = identity, split = 1, header = TRUE)
z <- na.fill(z, 0)
df_full <- fortify.zoo(z, melt = TRUE, name = "Product")[, c(2, 1, 3)]
names(df_full) <- names(df)
giving:
> df_full
Product Quarter Million
1 AAA 2013-Q3 81.1
2 AAA 2013-Q4 50.5
3 AAA 2014-Q1 81.9
4 AAA 2014-Q2 NA
5 AAA 2014-Q3 NA
6 AAA 2014-Q4 78.3
7 BBB 2013-Q3 29.9
8 BBB 2013-Q4 17.0
9 BBB 2014-Q1 NA
10 BBB 2014-Q2 NA
11 BBB 2014-Q3 87.4
12 BBB 2014-Q4 63.0
13 CCC 2013-Q3 NA
14 CCC 2013-Q4 41.1
15 CCC 2014-Q1 59.1
16 CCC 2014-Q2 110.7
17 CCC 2014-Q3 127.0
18 CCC 2014-Q4 NA
If a wide form "zoo"
object is OK then omit the last two lines, i.e. the omit the lines that set df_full
and its names and just use z
.
> z
AAA BBB CCC
2013-Q3 81.1 29.9 0.0
2013-Q4 50.5 17.0 41.1
2014-Q1 81.9 0.0 59.1
2014-Q2 0.0 0.0 110.7
2014-Q3 0.0 87.4 127.0
2014-Q4 78.3 63.0 0.0
Upvotes: 2
Reputation: 667
You can do it using the reshape2
package:
library(reshape2)
df <- melt(dcast(df, Product ~ Quarter))
Then you can change the NA values to 0:
df[is.na(df)] <- 0
Upvotes: 1
Reputation: 7119
Maybe a solution a bit too verbose for R
people, but it's using dplyr
# all products from your dataframe
product <- unique(df$Product) # all products from your dataframe
# all quarters you want
quarter <- c('2013-Q3', '2013-Q4', '2014-Q1', '2014-Q2', '2014-Q3', '2014-Q4')
# let's combine them
df2 <- expand.grid(Product=product, Quarter = quarter)
# and now let's do a join between your df and all possible
# combinations of Products and Quarters
df %>%
right_join(df2) %>% # here the join
arrange(Product, Quarter) %>% # here the sorting
mutate(Value = ifelse(is.na(Million),0, Million)) # replacing the NA with 0
Upvotes: 0
Reputation: 561
Try this
Values = as.data.frame(table(df$Product,df$Quarter))
Values = Values[with(Values, order(Var1, Var2)), ]
colnames(Values)[1] = 'Product'
colnames(Values)[2] = 'Quarter'
data = merge(x = Values, y = df, by =c("Product","Quarter"), all.x=TRUE)
data[is.na(data)] <- 0
data = data[,c(1,2,4)]
Upvotes: 0
Reputation: 31171
You can try:
library(data.table)
setkey(setDT(df), Product, Quarter)[CJ(unique(Product), unique(Quarter))][!df, Million:=0][]
# Product Quarter Million
# 1: AAA 2013-Q3 81.1
# 2: AAA 2013-Q4 50.5
# 3: AAA 2014-Q1 81.9
# 4: AAA 2014-Q2 0.0
# 5: AAA 2014-Q3 0.0
# 6: AAA 2014-Q4 78.3
# 7: BBB 2013-Q3 29.9
# 8: BBB 2013-Q4 17.0
# 9: BBB 2014-Q1 0.0
#10: BBB 2014-Q2 0.0
#11: BBB 2014-Q3 87.4
#12: BBB 2014-Q4 63.0
#13: CCC 2013-Q3 0.0
#14: CCC 2013-Q4 41.1
#15: CCC 2014-Q1 59.1
#16: CCC 2014-Q2 110.7
#17: CCC 2014-Q3 127.0
#18: CCC 2014-Q4 0.0
Upvotes: 2