Reputation: 4329
Given a 1D array of indices:
a = array([1, 0, 3])
I want to one-hot encode this as a 2D array:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
Upvotes: 356
Views: 353070
Reputation: 1742
Simple example using np.put_along_axis
:
x = rng.integers(0, 10, 20)
t = np.zeros([20, 10])
np.put_along_axis(t, indices=np.expand_dims(x, 1), values=1, axis=1)
print(x)
print(t)
[8 6 5 2 3 0 0 0 1 8 6 9 5 6 9 7 6 5 5 9]
[[0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]]
Upvotes: 0
Reputation: 1
For a more general cases where you have a ndarray, you could use numpy broadcasting:
a = array([[[[1, 0, 3]]]]) # (1, 1, 1, 3)
b = (a[..., np.newaxis] == np.arange(np.max(a) + 1)).astype(np.int32)
which would give you:
array([[[[[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1]]]]], dtype=int32)
The result shape is (1, 1, 1, 3, 4).
Upvotes: 0
Reputation: 32521
Create a zeroed array b
with enough columns, i.e. a.max() + 1
.
Then, for each row i
, set the a[i]
th column to 1
.
>>> a = np.array([1, 0, 3])
>>> b = np.zeros((a.size, a.max() + 1))
>>> b[np.arange(a.size), a] = 1
>>> b
array([[ 0., 1., 0., 0.],
[ 1., 0., 0., 0.],
[ 0., 0., 0., 1.]])
Upvotes: 546
Reputation: 4409
I find the easiest solution combines np.take
and np.eye
def one_hot(x, depth: int):
return np.take(np.eye(depth), x, axis=0)
works for x
of any shape.
Upvotes: 3
Reputation: 7350
def one_hot(n, class_num, col_wise=True):
a = np.eye(class_num)[n.reshape(-1)]
return a.T if col_wise else a
# Column for different hot
print(one_hot(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 8, 7]), 10))
# Row for different hot
print(one_hot(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 8, 7]), 10, col_wise=False))
Upvotes: 2
Reputation: 903
If using tensorflow
, there is one_hot()
:
import tensorflow as tf
import numpy as np
a = np.array([1, 0, 3])
depth = 4
b = tf.one_hot(a, depth)
# <tf.Tensor: shape=(3, 3), dtype=float32, numpy=
# array([[0., 1., 0.],
# [1., 0., 0.],
# [0., 0., 0.]], dtype=float32)>
Upvotes: 2
Reputation: 895
For 1-hot-encoding
one_hot_encode=pandas.get_dummies(array)
ENJOY CODING
Upvotes: 8
Reputation: 10948
import numpy as np
a = np.array([1,0,3])
b = np.array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
from neuraxle.steps.numpy import OneHotEncoder
encoder = OneHotEncoder(nb_columns=4)
b_pred = encoder.transform(a)
assert b_pred == b
Link to documentation: neuraxle.steps.numpy.OneHotEncoder
Upvotes: -1
Reputation: 661
You can also use eye function of numpy:
numpy.eye(number of classes)[vector containing the labels]
Upvotes: 51
Reputation: 125
You can use the following code for converting into a one-hot vector:
let x is the normal class vector having a single column with classes 0 to some number:
import numpy as np
np.eye(x.max()+1)[x]
if 0 is not a class; then remove +1.
Upvotes: 5
Reputation: 7059
>>> values = [1, 0, 3]
>>> n_values = np.max(values) + 1
>>> np.eye(n_values)[values]
array([[ 0., 1., 0., 0.],
[ 1., 0., 0., 0.],
[ 0., 0., 0., 1.]])
Upvotes: 280
Reputation: 125
Use the following code. It works best.
def one_hot_encode(x):
"""
argument
- x: a list of labels
return
- one hot encoding matrix (number of labels, number of class)
"""
encoded = np.zeros((len(x), 10))
for idx, val in enumerate(x):
encoded[idx][val] = 1
return encoded
Found it here P.S You don't need to go into the link.
Upvotes: -1
Reputation: 759
clean and easy solution:
max_elements_i = np.expand_dims(np.argmax(p, axis=1), axis=1)
one_hot = np.zeros(p.shape)
np.put_along_axis(one_hot, max_elements_i, 1, axis=1)
Upvotes: 2
Reputation: 319
Such type of encoding are usually part of numpy array. If you are using a numpy array like this :
a = np.array([1,0,3])
then there is very simple way to convert that to 1-hot encoding
out = (np.arange(4) == a[:,None]).astype(np.float32)
That's it.
Upvotes: 1
Reputation: 1279
Here is what I find useful:
def one_hot(a, num_classes):
return np.squeeze(np.eye(num_classes)[a.reshape(-1)])
Here num_classes
stands for number of classes you have. So if you have a
vector with shape of (10000,) this function transforms it to (10000,C). Note that a
is zero-indexed, i.e. one_hot(np.array([0, 1]), 2)
will give [[1, 0], [0, 1]]
.
Exactly what you wanted to have I believe.
PS: the source is Sequence models - deeplearning.ai
Upvotes: 56
Reputation: 5599
Here's a dimensionality-independent standalone solution.
This will convert any N-dimensional array arr
of nonnegative integers to a one-hot N+1-dimensional array one_hot
, where one_hot[i_1,...,i_N,c] = 1
means arr[i_1,...,i_N] = c
. You can recover the input via np.argmax(one_hot, -1)
def expand_integer_grid(arr, n_classes):
"""
:param arr: N dim array of size i_1, ..., i_N
:param n_classes: C
:returns: one-hot N+1 dim array of size i_1, ..., i_N, C
:rtype: ndarray
"""
one_hot = np.zeros(arr.shape + (n_classes,))
axes_ranges = [range(arr.shape[i]) for i in range(arr.ndim)]
flat_grids = [_.ravel() for _ in np.meshgrid(*axes_ranges, indexing='ij')]
one_hot[flat_grids + [arr.ravel()]] = 1
assert((one_hot.sum(-1) == 1).all())
assert(np.allclose(np.argmax(one_hot, -1), arr))
return one_hot
Upvotes: 1
Reputation: 4773
In case you are using keras, there is a built in utility for that:
from keras.utils.np_utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=3)
And it does pretty much the same as @YXD's answer (see source-code).
Upvotes: 59
Reputation: 17
I am adding for completion a simple function, using only numpy operators:
def probs_to_onehot(output_probabilities):
argmax_indices_array = np.argmax(output_probabilities, axis=1)
onehot_output_array = np.eye(np.unique(argmax_indices_array).shape[0])[argmax_indices_array.reshape(-1)]
return onehot_output_array
It takes as input a probability matrix: e.g.:
[[0.03038822 0.65810204 0.16549407 0.3797123 ] ... [0.02771272 0.2760752 0.3280924 0.33458805]]
And it will return
[[0 1 0 0] ... [0 0 0 1]]
Upvotes: 0
Reputation: 143
I recently ran into a problem of same kind and found said solution which turned out to be only satisfying if you have numbers that go within a certain formation. For example if you want to one-hot encode following list:
all_good_list = [0,1,2,3,4]
go ahead, the posted solutions are already mentioned above. But what if considering this data:
problematic_list = [0,23,12,89,10]
If you do it with methods mentioned above, you will likely end up with 90 one-hot columns. This is because all answers include something like n = np.max(a)+1
. I found a more generic solution that worked out for me and wanted to share with you:
import numpy as np
import sklearn
sklb = sklearn.preprocessing.LabelBinarizer()
a = np.asarray([1,2,44,3,2])
n = np.unique(a)
sklb.fit(n)
b = sklb.transform(a)
I hope someone encountered same restrictions on above solutions and this might come in handy
Upvotes: 1
Reputation: 611
Just to elaborate on the excellent answer from K3---rnc, here is a more generic version:
def onehottify(x, n=None, dtype=float):
"""1-hot encode x with the max value n (computed from data if n is None)."""
x = np.asarray(x)
n = np.max(x) + 1 if n is None else n
return np.eye(n, dtype=dtype)[x]
Also, here is a quick-and-dirty benchmark of this method and a method from the currently accepted answer by YXD (slightly changed, so that they offer the same API except that the latter works only with 1D ndarrays):
def onehottify_only_1d(x, n=None, dtype=float):
x = np.asarray(x)
n = np.max(x) + 1 if n is None else n
b = np.zeros((len(x), n), dtype=dtype)
b[np.arange(len(x)), x] = 1
return b
The latter method is ~35% faster (MacBook Pro 13 2015), but the former is more general:
>>> import numpy as np
>>> np.random.seed(42)
>>> a = np.random.randint(0, 9, size=(10_000,))
>>> a
array([6, 3, 7, ..., 5, 8, 6])
>>> %timeit onehottify(a, 10)
188 µs ± 5.03 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
>>> %timeit onehottify_only_1d(a, 10)
139 µs ± 2.78 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Upvotes: 2
Reputation: 20838
Here is an example function that I wrote to do this based upon the answers above and my own use case:
def label_vector_to_one_hot_vector(vector, one_hot_size=10):
"""
Use to convert a column vector to a 'one-hot' matrix
Example:
vector: [[2], [0], [1]]
one_hot_size: 3
returns:
[[ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.]]
Parameters:
vector (np.array): of size (n, 1) to be converted
one_hot_size (int) optional: size of 'one-hot' row vector
Returns:
np.array size (vector.size, one_hot_size): converted to a 'one-hot' matrix
"""
squeezed_vector = np.squeeze(vector, axis=-1)
one_hot = np.zeros((squeezed_vector.size, one_hot_size))
one_hot[np.arange(squeezed_vector.size), squeezed_vector] = 1
return one_hot
label_vector_to_one_hot_vector(vector=[[2], [0], [1]], one_hot_size=3)
Upvotes: 0
Reputation: 83397
You can use sklearn.preprocessing.LabelBinarizer
:
Example:
import sklearn.preprocessing
a = [1,0,3]
label_binarizer = sklearn.preprocessing.LabelBinarizer()
label_binarizer.fit(range(max(a)+1))
b = label_binarizer.transform(a)
print('{0}'.format(b))
output:
[[0 1 0 0]
[1 0 0 0]
[0 0 0 1]]
Amongst other things, you may initialize sklearn.preprocessing.LabelBinarizer()
so that the output of transform
is sparse.
Upvotes: 32
Reputation: 640
I think the short answer is no. For a more generic case in n
dimensions, I came up with this:
# For 2-dimensional data, 4 values
a = np.array([[0, 1, 2], [3, 2, 1]])
z = np.zeros(list(a.shape) + [4])
z[list(np.indices(z.shape[:-1])) + [a]] = 1
I am wondering if there is a better solution -- I don't like that I have to create those lists in the last two lines. Anyway, I did some measurements with timeit
and it seems that the numpy
-based (indices
/arange
) and the iterative versions perform about the same.
Upvotes: 2
Reputation: 40969
Here is a function that converts a 1-D vector to a 2-D one-hot array.
#!/usr/bin/env python
import numpy as np
def convertToOneHot(vector, num_classes=None):
"""
Converts an input 1-D vector of integers into an output
2-D array of one-hot vectors, where an i'th input value
of j will set a '1' in the i'th row, j'th column of the
output array.
Example:
v = np.array((1, 0, 4))
one_hot_v = convertToOneHot(v)
print one_hot_v
[[0 1 0 0 0]
[1 0 0 0 0]
[0 0 0 0 1]]
"""
assert isinstance(vector, np.ndarray)
assert len(vector) > 0
if num_classes is None:
num_classes = np.max(vector)+1
else:
assert num_classes > 0
assert num_classes >= np.max(vector)
result = np.zeros(shape=(len(vector), num_classes))
result[np.arange(len(vector)), vector] = 1
return result.astype(int)
Below is some example usage:
>>> a = np.array([1, 0, 3])
>>> convertToOneHot(a)
array([[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1]])
>>> convertToOneHot(a, num_classes=10)
array([[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]])
Upvotes: 6