Reputation: 471
I have a csv file, that I read into a pandas dataframe. The date and times are listed in a column "DateTime". I want to find the most recent and the least recent date to create an index to create a time series graph. Does pandas have a function that will return the most recent and the least recent date?
Edit:
I already tried using min and max. They give incorrect answers.
>>> f['Start Date']
Trip ID
4576 8/29/2013 14:13
4607 8/29/2013 14:42
4130 8/29/2013 10:16
4251 8/29/2013 11:29
4299 8/29/2013 12:02
4927 8/29/2013 18:54
4500 8/29/2013 13:25
4563 8/29/2013 14:02
4760 8/29/2013 17:01
4258 8/29/2013 11:33
4549 8/29/2013 13:52
4498 8/29/2013 13:23
4965 8/29/2013 19:32
4557 8/29/2013 13:57
4386 8/29/2013 12:31
...
198757 2/28/2014 20:40
198760 2/28/2014 20:59
198761 2/28/2014 20:59
198763 2/28/2014 21:32
198764 2/28/2014 21:32
198765 2/28/2014 21:34
198766 2/28/2014 21:41
198767 2/28/2014 21:50
198768 2/28/2014 21:54
198770 2/28/2014 22:19
198771 2/28/2014 22:15
198772 2/28/2014 22:38
198773 2/28/2014 22:45
198774 2/28/2014 23:01
198775 2/28/2014 23:20
Name: Start Date, Length: 144015, dtype: object
>>> min(f['Start Date'])
'1/1/2014 0:14'
>>> max(f['Start Date'])
'9/9/2013 9:59'
Upvotes: 35
Views: 90386
Reputation: 10980
First convert your date column in to a datetime column using
>> df['StartDate'] = pd.to_datetime(df['StartDate'])
You then can find the oldest date and most recent date using
>> least_recent_date = df['StartDate'].min()
>> most_recent_date = df['StartDate'].max()
Upvotes: 72