Reputation: 5414
This is a sample from my data
if the first column is of index 0 , I want to get the total sales per store from this file using MapReduce , Store name is at index 2 and revenue is at index 4
This is my Mapper Code
public void map(LongWritable key , Text value , Context context)
throws IOException , InterruptedException
{
String line = value.toString();
String[] columns = line.split("\t");
if(columns.length == 6)
{
String storeNameString = columns[2];
Text storeName = new Text(storeNameString);
String storeRevenueString = columns[4];
IntWritable storeRevenue = new IntWritable(Integer.parseInt(storeRevenueString));
context.write(storeName, storeRevenue);
}
}
This is My Reducer Code
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException , InterruptedException {
Text storeName = key;
int storeSales = 0;
while(values.iterator().hasNext())
{
storeSales += values.iterator().next().get();
}
context.write(storeName, new IntWritable(storeSales));
}
this is the code that runs the job
public class StoreSales extends Configured implements Tool {
public static void main(String[] args) throws Exception {
// this main function will call run method defined above.
int res = ToolRunner.run(new StoreSales(),args);
System.exit(res);
}
@Override
public int run(String[] args) throws Exception {
// TODO Auto-generated method stub
JobConf conf = new JobConf();
@SuppressWarnings("unused")
Job job = new Job(conf , "Sales Per Store");
job.setMapperClass(StoreSalesMapper.class);
job.setReducerClass(StoreSalesReducer.class);
job.setJarByClass(StoreSales.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
Path input = new Path(args[0]);
Path output = new Path(args[1]);
FileInputFormat.addInputPath(conf , input);
FileOutputFormat.setOutputPath(conf, output);
JobClient.runJob(conf);
return 0;
}
}
This is a sample of how results should be
this is the result I get
What am I doing wrong ?
Upvotes: 0
Views: 243
Reputation: 4125
I believe that I have located the problem here. when using the line.split method you have improperly escaped the tab character. This is because the String.split
method interprets its input as a regex. When using regex, the correct way to specify a tab character is \\t
, while you are using the \t
. This is due to the fact that the backslash itself must be escaped. Note that you are missing a \
character.
corrected split condition
String[] columns = line.split("\\t");
Upvotes: 0
Reputation: 1133
There is nothing wrong in your logic , i have used your logic and modified bit in driver program using new map reduce api :
Mapper part
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class Map extends Mapper<LongWritable,Text,Text,IntWritable>{
public void map(LongWritable key , Text value , Context context)
throws IOException , InterruptedException
{
String line = value.toString();
String[] columns = line.split("\\t");
if(columns.length == 6)
{
String storeNameString = columns[2];
Text storeName = new Text(storeNameString);
String storeRevenueString = columns[4];
IntWritable storeRevenue = new IntWritable(Integer.parseInt(storeRevenueString));
context.write(storeName, storeRevenue);
}
}
}
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class Reduce extends Reducer<Text,IntWritable,Text,IntWritable>{
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException , InterruptedException {
Text storeName = key;
int storeSales = 0;
while(values.iterator().hasNext())
{
storeSales += values.iterator().next().get();
}
context.write(storeName, new IntWritable(storeSales));
}
}
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class Driver {
public static void main(String[] args) throws Exception {
// this main function will call run method defined above.
// TODO Auto-generated method stub
Configuration conf=new Configuration();
@SuppressWarnings("unused")
Job job = new Job(conf , "Sales Per Store");
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setJarByClass(Driver.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
Sample Input file :
2012-01-01 09.00 sanJose clothin 214 amex
2012-01-01 09.00 seattle music 320 master
2012-01-01 09.00 seattle elec 3120 master
2012-01-01 09.00 sanJose perfume 3200 amex
Output File :
cat test123/part-r-00000
sanJose 3414
seattle 3440
Upvotes: 1