Reputation: 35
I have a csv file with datetime column: "2011-05-02T04:52:09+00:00".
I am using scala, the file is loaded into spark DataFrame and I can use jodas time to parse the date:
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
val df = new SQLContext(sc).load("com.databricks.spark.csv", Map("path" -> "data.csv", "header" -> "true"))
val d = org.joda.time.format.DateTimeFormat.forPattern("yyyy-mm-dd'T'kk:mm:ssZ")
I would like to create new columns base on datetime field for timeserie analysis.
In DataFrame, how do I create a column base on value of another column?
I notice DataFrame has following function: df.withColumn("dt",column), is there a way to create a column base on value of existing column?
Thanks
Upvotes: 3
Views: 9943
Reputation: 6693
import org.apache.spark.sql.types.DateType
import org.apache.spark.sql.functions._
import org.joda.time.DateTime
import org.joda.time.format.DateTimeFormat
val d = DateTimeFormat.forPattern("yyyy-mm-dd'T'kk:mm:ssZ")
val dtFunc: (String => Date) = (arg1: String) => DateTime.parse(arg1, d).toDate
val x = df.withColumn("dt", callUDF(dtFunc, DateType, col("dt_string")))
The callUDF
, col
are included in functions
as the import
show
The dt_string
inside col("dt_string")
is the origin column name of your df, which you want to transform from.
Alternatively, you could replace the last statement with:
val dtFunc2 = udf(dtFunc)
val x = df.withColumn("dt", dtFunc2(col("dt_string")))
Upvotes: 7