Reputation: 170
I have this code:
import pyparsing as pp
point = pp.Literal(".")
number = pp.Combine(pp.Word(pp.nums) + pp.Optional(point + pp.Word(pp.nums)))
lpar = pp.Literal("(").suppress()
rpar = pp.Literal(")").suppress()
plus = pp.Literal("+")
minus = pp.Literal("-")
mult = pp.Literal("*")
div = pp.Literal("/")
exp = pp.Literal("^")
mod = pp.Literal("%")
idiv = pp.Literal("//")
comma = pp.Literal(',')
ident = pp.Combine(pp.Word(pp.alphanums) + pp.Literal("_") + pp.Word(pp.nums))
expr = pp.Forward()
atom = number | ident | pp.Group(lpar + expr + rpar)
factor = pp.Forward()
factor <<= pp.Group(atom + pp.ZeroOrMore(exp + factor))
term = pp.Group(factor + pp.ZeroOrMore((mult | idiv | div | mod | exp) + factor))
expr <<= pp.Optional(plus | minus) + term + pp.ZeroOrMore((plus | minus) + term)
which gives parser for simple arithmetic expressions in expr
. How can I change it so that the parser accepts also function calls (e.g. 1 + max(1 + 2, var_14 / 3)
) as a part of mathematical expressions on its input? I think about including something like this in the grammar:
arglist = atom | pp.Combine(arglist + comma + atom)
func = ident + lpar + arglist + rpar
Upvotes: 1
Views: 174
Reputation: 63762
In this grammar, a function call is at the same level as a variable reference or numeric literal, so I would add it as part of the definition of atom
:
function_call = Group(ident + lpar + Group(Optional(delimitedList(expr))) + rpar)
atom = number | function_call | ident | pp.Group(lpar + expr + rpar)
Also note the use of delimitedList
in place of expr + ZeroOrMore(comma + expr)
.
Upvotes: 1