Reputation: 603
I’m trying to create a protocol for types that are Lerp-able (linear-interpolatable). I’m declaring it similarly to how Equatable
is defined:
protocol Lerpable {
func lerp(from: Self, to: Self, alpha: Double) -> Self
}
Unfortunately, when I try to implement Lerpable
for Double
:
func lerp(from: Double, to: Double, alpha: Double) -> Double {
return from + alpha * (to - from)
}
extension Double: Lerpable {}
I get an error: Type 'Double' does not conform to protocol 'Lerpable'
.
I assumed this would be pretty straightforward, but maybe I just don’t understand how Equatable works. Or is it a special case in Swift? Any thoughts?
UPDATE: The correct answer is below, and here’s the final version of the code, for others’ reference:
protocol Lerpable {
func lerp(to: Self, alpha: Double) -> Self
}
extension Double: Lerpable {
func lerp(to: Double, alpha: Double) -> Double {
return self + alpha * (to - self)
}
}
func lerp<T: Lerpable>(from: T, to: T, alpha: Double) -> T {
return from.lerp(to, alpha: alpha)
}
I added the global lerp
function so I could still refer to it as
lerp(foo, bar, alpha: 0.5)
rather than
foo.lerp(bar, alpha: 0.5)
Upvotes: 4
Views: 693
Reputation: 243
You may further abstract the implementation by adding a typealias for the progress value 't'
public protocol Lerpable {
typealias LerpProgressType
func lerpTo(value: Self, t: LerpProgressType) -> Self
}
public func lerp<T:Lerpable>(from: T, _ to: T, _ t: T.LerpProgressType) -> T {
return from.lerpTo(to, t: t)
}
// implementations
extension Double : Lerpable {
public typealias LerpProgressType = Double
public func lerpTo(value: Double, t: Double) -> Double {
return (1.0 - t) * self + t * value
}
}
extension Float : Lerpable {
public typealias LerpProgressType = Float
public func lerpTo(value: Float, t: Float) -> Float {
return (1.0 - t) * self + t * value
}
}
extension CGFloat : Lerpable {
public typealias LerpProgressType = CGFloat
public func lerpTo(value: CGFloat, t: CGFloat) -> CGFloat {
return (1.0 - t) * self + t * value
}
}
You can now also extend various structs (such as CGPoint, CGSize, CGRect, CATransform3D, etc.):
extension CGPoint : Lerpable {
public typealias LerpProgressType = CGFloat
public func lerpTo(value: CGPoint, t: CGFloat) -> CGPoint {
return
CGPoint(
x: x.lerpTo(value.x, t),
y: y.lerpTo(value.y, t)
)
}
}
extension CLLocationCoordinate2D : LinearInterpolation {
public typealias LerpProgressType = CLLocationDegrees
public func lerpTo(value: CLLocationCoordinate2D, t: CLLocationDegrees) -> CLLocationCoordinate2D {
return
CLLocationCoordinate2D(
latitude: latitude.lerpTo(value.latitude, t),
longitude: longitude.lerpTo(value.longitude, t)
)
}
}
To implement linear interpolation in generic structs:
public struct ValueRange<T> {
public var start:T
public var end:T
}
extension ValueRange where T:Lerpable {
public func lerp(t: T.LerpProgressType) -> T {
return start.lerpTo(end, t: t)
}
}
Upvotes: 0
Reputation: 22939
To fix your problem you need to put the lerp
function inside your extension
, like so:
extension Double: Lerpable {
func lerp(from: Double, to: Double, alpha: Double) -> Double {
return from + alpha * (to - from)
}
}
If you have a look at the Equatable
protocol
:
protocol Equatable {
func == (lhs: Self, rhs: Self) -> Bool
}
The reason you declare its method (==
specifically) outside your type extension
is because Equatable
wants you to overload an operator and operators must be declared at global scope. Here's an example to clarify:
protocol MyProtocol {
func *** (lhs: Self, rhs: Self) -> Self
}
Now to make Int
adopt the protocol:
extension Int : MyProtocol {}
infix operator *** {}
func *** (lhs: Int, rhs: Int) -> Int {
return lhs * rhs
}
Upvotes: 5