Reputation: 111
I've got this code in Scala:
val mat: CoordinateMatrix = new CoordinateMatrix(data)
val rowMatrix: RowMatrix = mat.toRowMatrix()
val svd: SingularValueDecomposition[RowMatrix, Matrix] = rowMatrix.computeSVD(100, computeU = true)
val U: RowMatrix = svd.U // The U factor is a RowMatrix.
val S: Vector = svd.s // The singular values are stored in a local dense vector.
val V: Matrix = svd.V // The V factor is a local dense matrix.
val uArray: Array[Double] = U.toArray // doesn't work, because there is not toArray function in RowMatrix type
val sArray: Array[Double] = S.toArray // works good
val vArray: Array[Double] = V.toArray // works good
How can I change U into uArray or similar type, that could be printed out into CSV file?
Upvotes: 4
Views: 2649
Reputation: 111
It works:
def exportRowMatrix(matrix:RDD[String], fileName: String) = {
val pw = new PrintWriter(fileName)
matrix.collect().foreach(line => pw.println(line))
pw.flush
pw.close
}
val rdd = U.rows.map( x => x.toArray.mkString(","))
exportRowMatrix(rdd, "U.csv")
Upvotes: 0
Reputation: 40370
That's a basic operation, here is what you have to do considering that U is a RowMatrix as following :
val U = svd.U
rows() is a RowMatrix method that allows you to get an RDD from your RowMatrix by row.
You'll just need to apply rows on your RowMatrix and map the RDD[Vector] to create an Array that you would concatenate into a string creating an RDD[String].
val rdd = U.rows.map( x => x.toArray.mkString(","))
All you'll have to do now it to save the RDD :
rdd.saveAsTextFile(path)
Upvotes: 3