Reputation: 21
I have a large matrix, z, that I removed all values >3 and replaced with NA using:
z[z>3]<-NA
I have another matrix, y
, of identical dimensions that I need to replace values with NA
in positions corresponding to the locations where the elements were replaced in element z.
That is, if z[3,12]
was >3 and replaced with NA, I need y[3,12]
to be replaced with NA too. They have the same row names if that helps.
Upvotes: 2
Views: 2674
Reputation: 10194
How about:
is.na(y) <- is.na(z) <- z < 3 & !is.na(z)
or simply
is.na(y) <- is.na(z) <- z < 3
if z is guaranteed not to have missing values prior to the assignment
Upvotes: 1
Reputation: 7790
set.seed(42)
z <- matrix(rnorm(15, mean = 1), nrow = 5)
y <- matrix(0, nrow = 5, ncol = 3)
z
# [,1] [,2] [,3]
# [1,] 2.3709584 0.8938755 2.3048697
# [2,] 0.4353018 2.5115220 3.2866454
# [3,] 1.3631284 0.9053410 -0.3888607
# [4,] 1.6328626 3.0184237 0.7212112
# [5,] 1.4042683 0.9372859 0.8666787
y
# [,1] [,2] [,3]
# [1,] 0 0 0
# [2,] 0 0 0
# [3,] 0 0 0
# [4,] 0 0 0
# [5,] 0 0 0
# The 2D matrix can be indexed as a vector
idx <- which(z > 3)
z[idx] <- NA
y[idx] <- NA
z
# [,1] [,2] [,3]
# [1,] 2.3709584 0.8938755 2.3048697
# [2,] 0.4353018 2.5115220 NA
# [3,] 1.3631284 0.9053410 -0.3888607
# [4,] 1.6328626 NA 0.7212112
# [5,] 1.4042683 0.9372859 0.8666787
y
# [,1] [,2] [,3]
# [1,] 0 0 0
# [2,] 0 0 NA
# [3,] 0 0 0
# [4,] 0 NA 0
# [5,] 0 0 0
Upvotes: 2
Reputation: 193637
Just use is.na
on the first matrix to select the values to replace in the second matrix.
Example:
set.seed(1)
m1 <- matrix(sample(5, 25, TRUE), 5)
m2 <- matrix(sample(5, 25, TRUE), 5)
m1[m1 > 3] <- NA
m2[is.na(m1)] <- NA
m2
# [,1] [,2] [,3] [,4] [,5]
# [1,] 2 NA 4 5 NA
# [2,] 1 NA 4 NA 1
# [3,] 2 NA NA NA NA
# [4,] NA NA 4 3 4
# [5,] 2 5 NA NA 4
Upvotes: 1