Reputation: 987
I'm trying to make a time stepping code using the 4th order Runge-Kutta method but am running into issues indexing one of my values properly. My code is:
clc;
clear all;
L = 32; M = 32; N = 32; % No. of elements
Lx = 2; Ly = 2; Lz = 2; % Size of each element
dx = Lx/L; dy = Ly/M; dz = Lz/N; % Step size
Tt = 1;
t0 = 0; % Initial condition
T = 50; % Final time
dt = (Tt-t0)/T; % Determining time step interval
% Wave characteristics
H = 2; % Wave height
a = H/2; % Amplitude
Te = 6; % Period
omega = 2*pi/Te; % Wave rotational frequency
d = 25; % Water depth
x = 0; % Location of cylinder axis
u0(1:L,1:M,1:N,1) = 0; % Setting up solution space matrix (u values)
v0(1:L,1:M,1:N,1) = 0; % Setting up solution space matrix (v values)
w0(1:L,1:M,1:N,1) = 0; % Setting up solution space matrix (w values)
[k,L] = disp(d,omega); % Solving for k and wavelength using Newton-Raphson function
%u = zeros(1,50);
%v = zeros(1,50);
%w = zeros(1,50);
time = 1:1:50;
for t = 1:T
for i = 1:L
for j = 1:M
for k = 1:N
eta(i,j,k,t) = a*cos(omega*time(1,t);
u(i,j,k,1) = u0(i,j,k,1);
v(i,j,k,1) = v0(i,j,k,1);
w(i,j,k,1) = w0(i,j,k,1);
umag(i,j,k,t) = a*omega*(cosh(k*(d+eta(i,j,k,t))))/sinh(k*d);
vmag(i,j,k,t) = 0;
wmag(i,j,k,t) = -a*omega*(sinh(k*(d+eta(i,j,k,t))))/sinh(k*d);
uRHS(i,j,k,t) = umag(i,j,k,t)*cos(k*x-omega*t);
vRHS(i,j,k,t) = vmag(i,j,k,t)*sin(k*x-omega*t);
wRHS(i,j,k,t) = wmag(i,j,k,t)*sin(k*x-omega*t);
k1x(i,j,k,t) = dt*uRHS(i,j,k,t);
k2x(i,j,k,t) = dt*(0.5*k1x(i,j,k,t) + dt*uRHS(i,j,k,t));
k3x(i,j,k,t) = dt*(0.5*k2x(i,j,k,t) + dt*uRHS(i,j,k,t));
k4x(i,j,k,t) = dt*(k3x(i,j,k,t) + dt*uRHS(i,j,k,t));
u(i,j,k,t+1) = u(i,j,k,t) + (1/6)*(k1x(i,j,k,t) + 2*k2x(i,j,k,t) + 2*k3x(i,j,k,t) + k4x(i,j,k,t));
k1y(i,j,k,t) = dt*vRHS(i,j,k,t);
k2y(i,j,k,t) = dt*(0.5*k1y(i,j,k,t) + dt*vRHS(i,j,k,t));
k3y(i,j,k,t) = dt*(0.5*k2y(i,j,k,t) + dt*vRHS(i,j,k,t));
k4y(i,j,k,t) = dt*(k3y(i,j,k,t) + dt*vRHS(i,j,k,t));
v(i,j,k,t+1) = v(i,j,k,t) + (1/6)*(k1y(i,j,k,t) + 2*k2y(i,j,k,t) + 2*k3y(i,j,k,t) + k4y(i,j,k,t));
k1z(i,j,k,t) = dt*wRHS(i,j,k,t);
k2z(i,j,k,t) = dt*(0.5*k1z(i,j,k,t) + dt*wRHS(i,j,k,t));
k3z(i,j,k,t) = dt*(0.5*k2z(i,j,k,t) + dt*wRHS(i,j,k,t));
k4z(i,j,k,t) = dt*(k3z(i,j,k,t) + dt*wRHS(i,j,k,t));
w(i,j,k,t+1) = w(i,j,k,t) + (1/6)*(k1z(i,j,k,t) + 2*k2z(i,j,k,t) + 2*k3z(i,j,k,t) + k4z(i,j,k,t));
a(i,j,k,t+1) = ((u(i,j,k,t+1))^2 + (v(i,j,k,t+1))^2 + (w(i,j,k,t+1))^2)^0.5;
end
end
end
end
At the moment, the values seem to be fine for the first iteration but then I have the error Index exceeds matrix dimension
in the line calculating eta
. I understand that I am not correctly indexing the eta value but am not sure how to correct this.
My goal is to update the value of eta for each loop of t and then use that new eta value for the rest of the calculations.
I'm still quite new to programming and am trying to understand indexing, especially in 3 or 4 dimensional matrices and would really appreciate any advice in correctly calculating this value.
Thanks in advance for any advice!
Upvotes: 0
Views: 148
Reputation: 21351
You declare
time = 1:1:50;
which is just a row vector but access it here
eta(i,j,k,t) = a*cos(omega*time(i,j,k,t));
as if it were an array with 4 dimensions.
To correctly access element x
of time
you need to use syntax
time(1,x);
(as it is a 1 x 50 array)
Upvotes: 1