Reputation: 177
I need a range minimum query data structure that supports three operations:
- initialize with array A[n]
- update(i,j,v) - add v to all elements from the range A[i]...A[j]
- query (i,j) - find the minimal element from the range A[i]...A[j]
Both update and query must run in O(log n)
time and the structure must take O(n)
space.
Upvotes: 1
Views: 2432
Reputation: 177
Thanks for the help!
I managed to do this with the Lazy Propagation
technique.
The initialization is with a vector instead of an array.
It is easy to be turned into a maximum query structure... replace all the min-s with max-s and the number 2100000000 with -2100000000
#include <algorithm>
#include <vector>
#include <cmath>
using namespace std;
class IntervalTree
{
int* tree;
int* lazy;
int n;
void build_tree(const vector<int>& v, int node, int a, int b)
{
if (a > b) return;
if (a == b) { tree[node] = v[a]; return; }
build_tree(v, node * 2, a, (a + b) / 2);
build_tree(v, node * 2 + 1, 1 + (a + b) / 2, b);
tree[node] = min(tree[node * 2], tree[node * 2 + 1]);
}
void update_lazy(int node, int a, int b)
{
tree[node] += lazy[node];
if (a != b)
{
lazy[node * 2] += lazy[node];
lazy[node * 2 + 1] += lazy[node];
}
lazy[node] = 0;
}
void update_tree(int node, int a, int b, int i, int j, int value)
{
if (lazy[node] != 0) update_lazy(node,a,b);
if (a > b || a > j || b < i) return;
if (a >= i && b <= j)
{
tree[node] += value;
if (a != b)
{
lazy[node * 2] += value;
lazy[node * 2 + 1] += value;
}
return;
}
update_tree(node * 2, a, (a + b) / 2, i, j, value);
update_tree(1 + node * 2, 1 + (a + b) / 2, b, i, j, value);
tree[node] = min(tree[node * 2], tree[node * 2 + 1]);
}
int query_tree(int node, int a, int b, int i, int j)
{
if (a > b || a > j || b < i) return 2100000000;
if (lazy[node] != 0) update_lazy(node,a,b);
if (a >= i && b <= j) return tree[node];
int q1 = query_tree(node * 2, a, (a + b) / 2, i, j);
int q2 = query_tree(1 + node * 2, 1 + (a + b) / 2, b, i, j);
return min(q1, q2);
}
public:
IntervalTree(const vector<int>& v)
{
n = v.size();
int s = 2*pow(2, ceil(log2(v.size())));
tree = new int[s];
lazy = new int[s];
memset(lazy, 0, sizeof lazy);
build_tree(v, 1, 0, n - 1);
}
void update(int idx1, int idx2, int add)
{
update_tree(1, 0, n - 1, idx1, idx2, add);
}
int query(int idx1, int idx2)
{
return query_tree(1, 0, n - 1, idx1, idx2);
}
};
Upvotes: 1