Reputation: 3494
In [90]: list_dates = [datetime.date(2014,2,2),datetime.date(2015,2,2), datetime.date(2013,4,5)]
In [91]: df = DataFrame(list_dates, columns=['Date'])
In [92]: df
Out[92]:
Date
0 2014-02-02
1 2015-02-02
2 2013-04-05
Now I want to get a new DataFrame with only the dates that are from years 2014 and 2013:
In [93]: result = DataFrame([date for date in df.Date if date.year in (2014,2013)])
In [94]: result
Out[94]:
0
0 2014-02-02
1 2013-04-05
That works and gives me the desired DataFrame. Why doesn't the following work:
In [95]: result1 = df[df.Date.map(lambda x: x.year) == 2014 or p.Date.map(lambda x: x.year) == 2013]
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-95-86f01906c89b> in <module>()
----> 1 result1 = df[df.Date.map(lambda x: x.year) == 2014 or p.Date.map(lambda x: x.year) == 2013]
/home/marcos/anaconda/lib/python2.7/site-packages/pandas/core/generic.pyc in __nonzero__(self)
690 raise ValueError("The truth value of a {0} is ambiguous. "
691 "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
--> 692 .format(self.__class__.__name__))
693
694 __bool__ = __nonzero__
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
Or the following:
In [96]: df['year'] = df.Date.map(lambda x: x.year)
In [97]: result2 = df[df.year in (2014, 2013)]
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-97-814358a4edff> in <module>()
----> 1 result2 = df[df.year in (2014, 2013)]
/home/marcos/anaconda/lib/python2.7/site-packages/pandas/core/generic.pyc in __nonzero__(self)
690 raise ValueError("The truth value of a {0} is ambiguous. "
691 "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
--> 692 .format(self.__class__.__name__))
693
694 __bool__ = __nonzero__
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
I think that the problem is that when I use the 'in' command I am trying to check if a whole Series is in a tuple. But how do I make the evaluation be elementwise so that I get the result I want?
Upvotes: 2
Views: 102
Reputation: 394041
I'd convert the dates to datetime objects using to_datetime
, this then allows you to use the dt
accessor to access the year
attribute and we can then call isin
and pass a list of years of interest to filter the df:
In [68]:
df['Date'] = pd.to_datetime(df['Date'])
In [69]:
df[df['Date'].dt.year.isin([2013,2014])]
Out[69]:
Date
0 2014-02-02
2 2013-04-05
Upvotes: 3