Agos
Agos

Reputation: 19390

List comprehension vs. lambda + filter

I have a list that I want to filter by an attribute of the items.

Which of the following is preferred (readability, performance, other reasons)?

xs = [x for x in xs if x.attribute == value]
xs = filter(lambda x: x.attribute == value, xs)

Upvotes: 1155

Views: 908876

Answers (19)

While True
While True

Reputation: 423

By means of readability, I sometimes use this way:

by_attribute = lambda x: x.attribute == value
xs = filter(by_attribute , xs)

Yes, that's two lines of code instead of one, but you clean filter expression from cumbersome lambda and by naming lambda nicely it literally becomes being read as "filter by attribute" :)

Upvotes: 0

Et7f3XIV
Et7f3XIV

Reputation: 619

I am late to the battle but think I haven't seen it:

If you want to implement the filter_map pattern list comprehension is better. With map and filter you have to do

step1 = list(map(lambda x: test_and_value(x), step0))
step2 = list(filter(lambda x: x[1], step1))
step3 = list(map(lambda x: x[0], step2))

I do in three step because the test_and_value return a tuple with a mapped value and and boolean result to avoid loosing partial work:

Imaging test_and_value:

def test_and_value(x):
  inter = 3 * x # Very high computation compared to looping + allocating new list
  return inter, inter % 2 == 1

We could do in two step but then we recompute inter.

With list comprehension you can do this something like optimal code (with regular for loop and list.append)

Also list comprehension can also implement "flat_mapping" so for basic code like the question I don't know what I would choose. For complex thing I would def go for list comprehension. So I use them as default to avoid having to rewrite in another style.

Upvotes: -1

Vlad Havriuk
Vlad Havriuk

Reputation: 1451

As mentioned in the accepeted answer, filter() may create unneccessary function call overload, but you can use generator comprehension using parenthesis:

xs = (x for x in xs if x.attribute == value)

This way you take the best of both worlds: you get nice syntax and lazy evaluation. And if you don't need the latter, just replace () with [].

Upvotes: 1

Michael Dorner
Michael Dorner

Reputation: 20125

I would come to the conclusion: Use list comprehension over filter since its

  • more readable
  • more pythonic
  • faster (for Python 3.11, see attached benchmark, also see )

Keep in mind that filter returns a iterator, not a list.

python3 -m timeit '[x for x in range(10000000) if x % 2 == 0]'            

1 loop, best of 5: 270 msec per loop

python3 -m timeit 'list(filter(lambda x: x % 2 == 0, range(10000000)))'

1 loop, best of 5: 432 msec per loop

Upvotes: 6

Enrique
Enrique

Reputation: 134

In terms of performance, it depends.

filter does not return a list but an iterator, if you need the list 'immediately' filtering and list conversion it is slower than with list comprehension by about 40% for very large lists (>1M). Up to 100K elements, there is almost no difference, from 600K onwards there starts to be differences.

If you don't convert to a list, filter is practically instantaneous.

More info at: https://blog.finxter.com/python-lists-filter-vs-list-comprehension-which-is-faster/

Upvotes: 5

ingofreyer
ingofreyer

Reputation: 1164

Summarizing other answers

Looking through the answers, we have seen a lot of back and forth, whether or not list comprehension or filter may be faster or if it is even important or pythonic to care about such an issue. In the end, the answer is as most times: it depends.

I just stumbled across this question while optimizing code where this exact question (albeit combined with an in expression, not ==) is very relevant - the filter + lambda expression is taking up a third of my computation time (of multiple minutes).

My case

In my case, the list comprehension is much faster (twice the speed). But I suspect that this varies strongly based on the filter expression as well as the Python interpreter used.

Test it for yourself

Here is a simple code snippet that should be easy to adapt. If you profile it (most IDEs can do that easily), you will be able to easily decide for your specific case which is the better option:

whitelist = set(range(0, 100000000, 27))

input_list = list(range(0, 100000000))

proximal_list = list(filter(
        lambda x: x in whitelist,
        input_list
    ))

proximal_list2 = [x for x in input_list if x in whitelist]

print(len(proximal_list))
print(len(proximal_list2))

If you do not have an IDE that lets you profile easily, try this instead (extracted from my codebase, so a bit more complicated). This code snippet will create a profile for you that you can easily visualize using e.g. snakeviz:

import cProfile
from time import time


class BlockProfile:
    def __init__(self, profile_path):
        self.profile_path = profile_path
        self.profiler = None
        self.start_time = None

    def __enter__(self):
        self.profiler = cProfile.Profile()
        self.start_time = time()
        self.profiler.enable()

    def __exit__(self, *args):
        self.profiler.disable()
        exec_time = int((time() - self.start_time) * 1000)
        self.profiler.dump_stats(self.profile_path)


whitelist = set(range(0, 100000000, 27))
input_list = list(range(0, 100000000))

with BlockProfile("/path/to/create/profile/in/profile.pstat"):
    proximal_list = list(filter(
            lambda x: x in whitelist,
            input_list
        ))

    proximal_list2 = [x for x in input_list if x in whitelist]

print(len(proximal_list))
print(len(proximal_list2))

Upvotes: 0

Duncan
Duncan

Reputation: 95612

It is strange how much beauty varies for different people. I find the list comprehension much clearer than filter+lambda, but use whichever you find easier.

There are two things that may slow down your use of filter.

The first is the function call overhead: as soon as you use a Python function (whether created by def or lambda) it is likely that filter will be slower than the list comprehension. It almost certainly is not enough to matter, and you shouldn't think much about performance until you've timed your code and found it to be a bottleneck, but the difference will be there.

The other overhead that might apply is that the lambda is being forced to access a scoped variable (value). That is slower than accessing a local variable and in Python 2.x the list comprehension only accesses local variables. If you are using Python 3.x the list comprehension runs in a separate function so it will also be accessing value through a closure and this difference won't apply.

The other option to consider is to use a generator instead of a list comprehension:

def filterbyvalue(seq, value):
   for el in seq:
       if el.attribute==value: yield el

Then in your main code (which is where readability really matters) you've replaced both list comprehension and filter with a hopefully meaningful function name.

Upvotes: 739

Rod Senra
Rod Senra

Reputation: 318

Curiously on Python 3, I see filter performing faster than list comprehensions.

I always thought that the list comprehensions would be more performant. Something like: [name for name in brand_names_db if name is not None] The bytecode generated is a bit better.

>>> def f1(seq):
...     return list(filter(None, seq))
>>> def f2(seq):
...     return [i for i in seq if i is not None]
>>> disassemble(f1.__code__)
2         0 LOAD_GLOBAL              0 (list)
          2 LOAD_GLOBAL              1 (filter)
          4 LOAD_CONST               0 (None)
          6 LOAD_FAST                0 (seq)
          8 CALL_FUNCTION            2
         10 CALL_FUNCTION            1
         12 RETURN_VALUE
>>> disassemble(f2.__code__)
2           0 LOAD_CONST               1 (<code object <listcomp> at 0x10cfcaa50, file "<stdin>", line 2>)
          2 LOAD_CONST               2 ('f2.<locals>.<listcomp>')
          4 MAKE_FUNCTION            0
          6 LOAD_FAST                0 (seq)
          8 GET_ITER
         10 CALL_FUNCTION            1
         12 RETURN_VALUE

But they are actually slower:

   >>> timeit(stmt="f1(range(1000))", setup="from __main__ import f1,f2")
   21.177661532000116
   >>> timeit(stmt="f2(range(1000))", setup="from __main__ import f1,f2")
   42.233950221000214

Upvotes: 1

C.W.praen
C.W.praen

Reputation: 75

In addition to the accepted answer, there is a corner case when you should use filter instead of a list comprehension. If the list is unhashable you cannot directly process it with a list comprehension. A real world example is if you use pyodbc to read results from a database. The fetchAll() results from cursor is an unhashable list. In this situation, to directly manipulating on the returned results, filter should be used:

cursor.execute("SELECT * FROM TABLE1;")
data_from_db = cursor.fetchall()
processed_data = filter(lambda s: 'abc' in s.field1 or s.StartTime >= start_date_time, data_from_db) 

If you use list comprehension here you will get the error:

TypeError: unhashable type: 'list'

Upvotes: 4

user1767754
user1767754

Reputation: 25094

It took me some time to get familiarized with the higher order functions filter and map. So i got used to them and i actually liked filter as it was explicit that it filters by keeping whatever is truthy and I've felt cool that I knew some functional programming terms.

Then I read this passage (Fluent Python Book):

The map and filter functions are still builtins in Python 3, but since the introduction of list comprehensions and generator ex‐ pressions, they are not as important. A listcomp or a genexp does the job of map and filter combined, but is more readable.

And now I think, why bother with the concept of filter / map if you can achieve it with already widely spread idioms like list comprehensions. Furthermore maps and filters are kind of functions. In this case I prefer using Anonymous functions lambdas.

Finally, just for the sake of having it tested, I've timed both methods (map and listComp) and I didn't see any relevant speed difference that would justify making arguments about it.

from timeit import Timer

timeMap = Timer(lambda: list(map(lambda x: x*x, range(10**7))))
print(timeMap.timeit(number=100))

timeListComp = Timer(lambda:[(lambda x: x*x) for x in range(10**7)])
print(timeListComp.timeit(number=100))

#Map:                 166.95695265199174
#List Comprehension   177.97208347299602

Upvotes: 6

Jim50
Jim50

Reputation: 448

I thought I'd just add that in python 3, filter() is actually an iterator object, so you'd have to pass your filter method call to list() in order to build the filtered list. So in python 2:

lst_a = range(25) #arbitrary list
lst_b = [num for num in lst_a if num % 2 == 0]
lst_c = filter(lambda num: num % 2 == 0, lst_a)

lists b and c have the same values, and were completed in about the same time as filter() was equivalent [x for x in y if z]. However, in 3, this same code would leave list c containing a filter object, not a filtered list. To produce the same values in 3:

lst_a = range(25) #arbitrary list
lst_b = [num for num in lst_a if num % 2 == 0]
lst_c = list(filter(lambda num: num %2 == 0, lst_a))

The problem is that list() takes an iterable as it's argument, and creates a new list from that argument. The result is that using filter in this way in python 3 takes up to twice as long as the [x for x in y if z] method because you have to iterate over the output from filter() as well as the original list.

Upvotes: 34

I. J. Kennedy
I. J. Kennedy

Reputation: 25799

Since any speed difference is bound to be miniscule, whether to use filters or list comprehensions comes down to a matter of taste. In general I'm inclined to use comprehensions (which seems to agree with most other answers here), but there is one case where I prefer filter.

A very frequent use case is pulling out the values of some iterable X subject to a predicate P(x):

[x for x in X if P(x)]

but sometimes you want to apply some function to the values first:

[f(x) for x in X if P(f(x))]


As a specific example, consider

primes_cubed = [x*x*x for x in range(1000) if prime(x)]

I think this looks slightly better than using filter. But now consider

prime_cubes = [x*x*x for x in range(1000) if prime(x*x*x)]

In this case we want to filter against the post-computed value. Besides the issue of computing the cube twice (imagine a more expensive calculation), there is the issue of writing the expression twice, violating the DRY aesthetic. In this case I'd be apt to use

prime_cubes = filter(prime, [x*x*x for x in range(1000)])

Upvotes: 98

rharder
rharder

Reputation: 348

Here's a short piece I use when I need to filter on something after the list comprehension. Just a combination of filter, lambda, and lists (otherwise known as the loyalty of a cat and the cleanliness of a dog).

In this case I'm reading a file, stripping out blank lines, commented out lines, and anything after a comment on a line:

# Throw out blank lines and comments
with open('file.txt', 'r') as lines:        
    # From the inside out:
    #    [s.partition('#')[0].strip() for s in lines]... Throws out comments
    #   filter(lambda x: x!= '', [s.part... Filters out blank lines
    #  y for y in filter... Converts filter object to list
    file_contents = [y for y in filter(lambda x: x != '', [s.partition('#')[0].strip() for s in lines])]

Upvotes: 7

Adeynack
Adeynack

Reputation: 1270

An important difference is that list comprehension will return a list while the filter returns a filter, which you cannot manipulate like a list (ie: call len on it, which does not work with the return of filter).

My own self-learning brought me to some similar issue.

That being said, if there is a way to have the resulting list from a filter, a bit like you would do in .NET when you do lst.Where(i => i.something()).ToList(), I am curious to know it.

EDIT: This is the case for Python 3, not 2 (see discussion in comments).

Upvotes: 20

thiruvenkadam
thiruvenkadam

Reputation: 4250

Filter is just that. It filters out the elements of a list. You can see the definition mentions the same(in the official docs link I mentioned before). Whereas, list comprehension is something that produces a new list after acting upon something on the previous list.(Both filter and list comprehension creates new list and not perform operation in place of the older list. A new list here is something like a list with, say, an entirely new data type. Like converting integers to string ,etc)

In your example, it is better to use filter than list comprehension, as per the definition. However, if you want, say other_attribute from the list elements, in your example is to be retrieved as a new list, then you can use list comprehension.

return [item.other_attribute for item in my_list if item.attribute==value]

This is how I actually remember about filter and list comprehension. Remove a few things within a list and keep the other elements intact, use filter. Use some logic on your own at the elements and create a watered down list suitable for some purpose, use list comprehension.

Upvotes: 9

Tendayi Mawushe
Tendayi Mawushe

Reputation: 26108

This is a somewhat religious issue in Python. Even though Guido considered removing map, filter and reduce from Python 3, there was enough of a backlash that in the end only reduce was moved from built-ins to functools.reduce.

Personally I find list comprehensions easier to read. It is more explicit what is happening from the expression [i for i in list if i.attribute == value] as all the behaviour is on the surface not inside the filter function.

I would not worry too much about the performance difference between the two approaches as it is marginal. I would really only optimise this if it proved to be the bottleneck in your application which is unlikely.

Also since the BDFL wanted filter gone from the language then surely that automatically makes list comprehensions more Pythonic ;-)

Upvotes: 306

Umang
Umang

Reputation: 5276

Although filter may be the "faster way", the "Pythonic way" would be not to care about such things unless performance is absolutely critical (in which case you wouldn't be using Python!).

Upvotes: 38

unbeli
unbeli

Reputation: 30228

I find the second way more readable. It tells you exactly what the intention is: filter the list.
PS: do not use 'list' as a variable name

Upvotes: 12

John La Rooy
John La Rooy

Reputation: 304117

generally filter is slightly faster if using a builtin function.

I would expect the list comprehension to be slightly faster in your case

Upvotes: 9

Related Questions