Reputation: 10480
I get an error with the latest versions of clang and gcc with this code:
int main() {
auto lambda = [] (auto = [] {}) {};
lambda();
}
Clang gives the error:
prog.cc: In function 'int main()':
prog.cc:3:12: error: no match for call to '(main()::<lambda(auto:1)>) ()'
lambda();
^
prog.cc:2:35: note: candidate: template<class auto:1> main()::<lambda(auto:1)>
auto lambda = [] (auto = [] {}) {};
^
prog.cc:2:35: note: template argument deduction/substitution failed:
prog.cc:3:12: note: couldn't deduce template parameter 'auto:1'
lambda();
^
Why does this fail?
Upvotes: 19
Views: 1363
Reputation: 10292
Since lambdas are sugar for functors, the issue is on the fact template functions are unable to deduce template arguments (auto
) in this default context.
A lambda can be reduced to the functor struct level by taking in consideration those statements:
§5.1.2/3 [expr.prim.lambda]
The type of the lambda-expression (which is also the type of the closure object) is a unique, unnamed non-union class type [...]
§5.1.2/5 [expr.prim.lambda]
[...] For a generic lambda, the closure type has a public inline function call operator member template (14.5.2) whose template-parameter-list consists of one invented type template-parameter for each occurrence of auto in the lambda’s parameter-declaration-clause, in order of appearance. [...]
As such the type of your lambda is equivalent to this functor type:
struct unnamed
{
template<typename Auto1>
auto operator()(Auto1 = []{})
{
}
};
And your usage is then equivalent to:
int main() {
auto lambda = unnamed();
lambda();
}
The type of Auto1
is unable to be inferred in this context as specified in §14.8.2.5/5 [temp.deduct.type]:
The non-deduced contexts are:
[...]
— A template parameter used in the parameter type of a function parameter that has a default argument that is being used in the call for which argument deduction is being done.
Upvotes: 13
Reputation: 275720
Template functions (or methods) do not deduce their type parameters from their default arguments, and a closure with auto
parameters is merely an object with a template method.
This makes having a default lambda for a template function a bit annoying.
One approach would be to type erase calling an object, without storing it, like so:
#include <utility>
#include <type_traits>
#include <memory>
template<class Sig>
struct function_view;
template<class R, class...Args>
struct function_view<R(Args...)>{
void* state;
R(*f)(void*, Args&&...);
template<class F, class=std::enable_if_t<std::is_convertible<std::result_of_t<F&(Args...)>,R>{}>>
function_view( F&& fin ):
state(const_cast<void*>(static_cast<void*>(std::addressof(fin)))),
f( [](void* state, Args&&...args)->R{
F&& f = std::forward<F>(*static_cast<std::decay_t<F>*>(state));
return f(std::forward<Args>(args)...);
})
{}
function_view( R(*fin)(Args...) ):
state(fin),
f( fin?+[](void* state, Args&&...args)->R{
R(*f)(Args...) = static_cast<R(*)(Args...)>(state);
return f(std::forward<Args>(args)...);
}:nullptr)
{}
explicit operator bool(){return f;}
function_view():state(nullptr),f(nullptr){}
function_view(std::nullptr_t):function_view(){}
R operator()(Args...args)const{
return f(state, std::forward<Args>(args)...);
}
};
template<class...Args>
struct function_view<void(Args...)>{
void* state;
void(*f)(void*, Args&&...);
template<class F, class=std::result_of_t<F&(Args...)>>
function_view( F&& fin ):
state(const_cast<void*>(static_cast<void*>(std::addressof(fin)))),
f( [](void* state, Args&&...args){
F&& f = std::forward<F>(*static_cast<std::decay_t<F>*>(state));
f(std::forward<Args>(args)...);
})
{}
function_view( void(*fin)(Args...) ):
state(fin),
f( fin?+[](void* state, Args&&...args){
void(*f)(Args...) = static_cast<void(*)(Args...)>(state);
f(std::forward<Args>(args)...);
}:nullptr)
{}
explicit operator bool(){return f;}
function_view():state(nullptr),f(nullptr){}
function_view(std::nullptr_t):function_view(){}
void operator()(Args...args)const{
f(state, std::forward<Args>(args)...);
}
};
int main() {
auto f = [] (function_view<void()> x=[]{}) {
x();
};
f();
}
As this just works with function pointers, and I have had good experience with gcc inlining simple function pointers, it might not have as high a performance impact as std::function
. And unlike std::function
no virtual tables or heap allocation is involved.
For a non-lambda, you can do this:
template<class X=function_view<void()>>
void f( X&& x=[]{} ) {
x();
}
which deduces if you pass is an argument, and becomes a function-at-nothing if you don't. You could also do:
struct do_nothing {
template<class...Args>
void operator()(Args&&...)const{}
};
template<class X=do_nothing>
void f( X&& x=do_nothing{} ) {
x();
}
which might be easier to optimize.
Upvotes: 2
Reputation: 56883
Type deduction for auto
does not consider default arguments.
Upvotes: 22