Reputation: 339
I work with an image that I consider as a matrix.
I want to turn a 800 x 800 matrix (A) into a 400 x 400 matrix (B) where the mean of 4 cells of the A matrix = 1 cell of the B matrix (I know this not a right code line) :
B[1,1] =mean2(A[1,1 + 1,2 + 2,1 + 2,2])
and so on for the whole matrix ...
B [1,2]=mean2(A[1,3 + 1,4 + 2,3 + 2,4 ])
I thought to :
1) Reshape the A matrix into a 2 x 320 000 matrix so I get the four cells I need to average next to each other and it is easier to deal with the row number afterwards.
Im4bis=reshape(permute(reshape(Im4,size(Im4,2),2,[]),[2,3,1]),2,[]);
2) Create a cell-array with the 4 cells I need to average (subsetted) and calculate the mean of it. That's where it doesn't work
I{1,160000}=ones,
for k=drange(1:2:319999)
for n=1:160000
I{n}=mean2(Im4bis(1:2,k:k+1));
end
end
I created an empty matrix of 400 x 400 cells (actually a vector of 1 x 160000) and I wanted to fill it with the mean but I get a matrix of 1 x 319 999 cells with one cell out of 2 empty.
Looking for light
My Input Image:
Upvotes: 2
Views: 599
Reputation: 3898
Method 1
AC = mat2cell(A, repmat(2,size(A,1)/2,1), repmat(2,size(A,2)/2,1));
out = cellfun(@(x) mean(x(:)), AC);
Method 2
using im2col
out = reshape(mean(im2col(A,[2 2],'distinct')),size(A)./2);
Method 3
Using simple for
loop
out(size(A,1)/2,size(A,2)/2) = 0;
k = 1;
for i = 1:2:size(A,1)
l = 1;
for j = 1:2:size(A,2)
out(k,l) = mean(mean(A(i:i+1,j:j+1)));
l = l+1;
end
k = k+1;
end
Test on input image:
A = rgb2gray(imread('inputImage.png'));
%// Here, You could use any of the method from any answers
%// or you could use the best method from the bench-marking tests done by Divakar
out = reshape(mean(im2col(A,[2 2],'distinct')),size(A)./2);
imshow(uint8(out));
imwrite(uint8(out),'outputImage.bmp');
Output Image:
Final check by reading the already written image
B = imread('outputImage.bmp');
>> whos B
Name Size Bytes Class Attributes
B 400x400 160000 uint8
Upvotes: 3
Reputation: 221534
One approach based on this solution
using reshape
, sum
& squeeze
-
sublen = 2; %// subset length
part1 = reshape(sum(reshape(A,sublen,[])),size(A,1)/sublen,sublen,[]);
out = squeeze(sum(part1,2))/sublen^2;
Set #1
Here are the runtime comparisons for the approaches listed so far for a input datasize of 800x 800
-
%// Input
A = rand(800,800);
%// Warm up tic/toc.
for k = 1:50000
tic(); elapsed = toc();
end
disp('----------------------- With RESHAPE + SUM + SQUEEZE')
tic
sublen = 2; %// subset length
part1 = reshape(sum(reshape(A,sublen,[])),size(A,1)/sublen,sublen,[]);
out = squeeze(sum(part1,2))/sublen^2;
toc, clear sublen part1 out
disp('----------------------- With BLOCKPROC')
tic
B = blockproc(A, [2 2], @(x) mean(x.data(:))); %// [m n]
toc, clear B
disp('----------------------- With PERMUTE + MEAN + RESHAPE')
tic
m = 2;n = 2;
T = permute(reshape(permute(reshape(A, size(A, 1), n, []),...
[2 1 3]), n, m, []), [2 1 3]);
B = reshape(mean(mean(T,1),2), size(A,1)/m, size(A,2)/m);
toc, clear B T m n
disp('----------------------- With CONVOLUTION')
tic
m = 2;n = 2;
B = conv2(ones(m,1)/m, ones(1,n)/n ,A,'same');
B = B(m-1:m:end ,n-1:n:end);
toc, clear m n B
disp('----------------------- With MAT2CELL')
tic
AC = mat2cell(A, repmat(2,size(A,1)/2,1), repmat(2,size(A,2)/2,1));
out = cellfun(@(x) mean(x(:)), AC);
toc
disp('----------------------- With IM2COL')
tic
out = reshape(mean(im2col(A,[2 2],'distinct')),size(A)./2);
toc
Runtime results -
----------------------- With RESHAPE + SUM + SQUEEZE
Elapsed time is 0.004702 seconds.
----------------------- With BLOCKPROC
Elapsed time is 6.039851 seconds.
----------------------- With PERMUTE + MEAN + RESHAPE
Elapsed time is 0.006015 seconds.
----------------------- With CONVOLUTION
Elapsed time is 0.002174 seconds.
----------------------- With MAT2CELL
Elapsed time is 2.362291 seconds.
----------------------- With IM2COL
Elapsed time is 0.239218 seconds.
To make the runtimes more fair, we can use a number of trials of 1000
on top of the fastest three approaches for the same input datasize of 800 x 800
, giving us -
----------------------- With RESHAPE + SUM + SQUEEZE
Elapsed time is 1.264722 seconds.
----------------------- With PERMUTE + MEAN + RESHAPE
Elapsed time is 3.986038 seconds.
----------------------- With CONVOLUTION
Elapsed time is 1.992030 seconds.
Set #2
Here are the runtime comparisons for a larger input datasize of 10000x 10000
for the fastest three approaches -
----------------------- With RESHAPE + SUM + SQUEEZE
Elapsed time is 0.158483 seconds.
----------------------- With PERMUTE + MEAN + RESHAPE
Elapsed time is 0.589322 seconds.
----------------------- With CONVOLUTION
Elapsed time is 0.307836 seconds.
Upvotes: 3
Reputation: 112659
Let A
denote your matrix and
m = 2; %// block size: rows
n = 2; %// block size: columns
Use blockproc
:
B = blockproc(A, [m n], @(x) mean(x.data(:)));
Example:
>> A = magic(6)
A =
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
>> B = blockproc(A, [m n], @(x) mean(x.data(:)))
B =
17.7500 15.0000 22.7500
19.0000 18.5000 18.0000
18.7500 22.0000 14.7500
If you prefer the reshaping way (which is probably faster), use this great answer to organize the matrix into 2x2 blocks tiled along the third dimension, average along the first two dimensions, and reshape the result:
T = permute(reshape(permute(reshape(A, size(A, 1), n, []), [2 1 3]), n, m, []), [2 1 3]);
B = reshape(mean(mean(T,1),2), size(A,1)/m, size(A,2)/n);
Apply a 2D convolution (conv2
) and then downsample. The convolution computes more entries than are really necessary (hence the downsampling), but on the other hand it can be done separably, which helps speed things up:
B = conv2(ones(m,1)/m, ones(1,n)/n ,A,'same');
B = B(m-1:m:end ,n-1:n:end);
Upvotes: 3