Reputation: 643
I try to calculate the following integral by Maple 18:
int(BesselK(1, x)/x^3, x);
The result is:
(1/16)*MeijerG([[1], []], [[-1/2, -3/2], [0]], (1/4)*x^2)
However, when I calculate the derivation of the above result, I didn't get the same expression representation:
diff((1/16)*MeijerG([[1], []], [[-1/2, -3/2], [0]], (1/4)*x^2), x)
= (1/8)*MeijerG([[], []], [[-1/2, -3/2], []], (1/4)*x^2)/x
How do I tell Maple to expresse the result by modified bessel function instead of MeijerG function?
Thanks!
Upvotes: 1
Views: 485
Reputation: 7271
restart:
igrand := BesselK(1, x)/x^3;
BesselK(1, x)
igrand := -------------
3
x
sol := int(igrand, x);
1 / [[-1 -3] ] 1 2\
sol := -- MeijerG|[[1], []], [[--, --], [0]], - x |
16 \ [[2 2 ] ] 4 /
dsol := convert( diff(sol,x), StandardFunctions );
/ (1/2)\
| / 2\ |
BesselK\1, \x / /
dsol := ---------------------
3
x
simplify(dsol) assuming x>=0;
BesselK(1, x)
-------------
3
x
Upvotes: 2