Reputation: 195
Seems the number of resulting rows is different when using distinct vs unique. The data set I am working with is huge. Hope the code is OK to understand.
dt2a <- select(dt, mutation.genome.position,
mutation.cds, primary.site, sample.name, mutation.id) %>%
group_by(mutation.genome.position, mutation.cds, primary.site) %>%
mutate(occ = nrow(.)) %>%
select(-sample.name) %>% distinct()
dim(dt2a)
[1] 2316382 5
## Using unique instead
dt2b <- select(dt, mutation.genome.position, mutation.cds,
primary.site, sample.name, mutation.id) %>%
group_by(mutation.genome.position, mutation.cds, primary.site) %>%
mutate(occ = nrow(.)) %>%
select(-sample.name) %>% unique()
dim(dt2b)
[1] 2837982 5
This is the file I am working with:
sftp://sftp-cancer.sanger.ac.uk/files/grch38/cosmic/v72/CosmicMutantExport.tsv.gz
dt = fread(fl)
Upvotes: 4
Views: 4535
Reputation: 206197
This appears to be a result of the group_by
Consider this case
dt<-data.frame(g=rep(c("a","b"), each=3),
v=c(2,2,5,2,7,7))
dt %>% group_by(g) %>% unique()
# Source: local data frame [4 x 2]
# Groups: g
#
# g v
# 1 a 2
# 2 a 5
# 3 b 2
# 4 b 7
dt %>% group_by(g) %>% distinct()
# Source: local data frame [2 x 2]
# Groups: g
#
# g v
# 1 a 2
# 2 b 2
dt %>% group_by(g) %>% distinct(v)
# Source: local data frame [4 x 2]
# Groups: g
#
# g v
# 1 a 2
# 2 a 5
# 3 b 2
# 4 b 7
When you use distinct()
without indicating which variables to make distinct, it appears to use the grouping variable.
Upvotes: 11