Reputation: 1368
I want to do this in a proper way:
data = np.array(data)
data =[
[1, 1, 2, 1],
[0, 1, 3, 2],
[0, 2, 3, 2],
[2, 4, 3, 1],
[0, 2, 1, 4],
[3, 1, 4, 1]]
this should become (delete the lines that start with 0):
[1, 1, 2, 1]
[2, 4, 3, 1]
[3, 1, 4, 1]
So far I did it like this:
lines = []
for i in range(0, len(data[0])):
if data[0,i] != 0:
lines.append(data[:,i])
lines = np.array(lines)
Then I found this fine method:
mask = 1 <= data[0,:]
and now I want to apply that mask to that array. This Mask reads: [True, False, False, True, False, True]
. How do I do that?
Upvotes: 1
Views: 584
Reputation: 180391
I presume you have a numpy array based on the data[0,:]
and data[0,i]
you have in your question and you mean data[:, 0]
:
import numpy as np
data = np.array([
[1, 1, 2, 1],
[0, 1, 3, 2],
[0, 2, 3, 2],
[2, 4, 3, 1],
[0, 2, 1, 4],
[3, 1, 4, 1]])
data = data[data[:,0] != 0]
print(data)
Output:
[[1 1 2 1]
[2 4 3 1]
[3 1 4 1]]
data[0,:]
is the first row [1 1 2 1]
not the first column
Upvotes: 1
Reputation: 60055
Why not just:
[ar for ar in data if ar[0] != 0]
This assumes that arrays are not empty.
Upvotes: 2
Reputation: 5347
Using List comprehension
In [56]: [elem for elem in data if elem[0] !=0]
Out[56]: [[1, 1, 2, 1], [2, 4, 3, 1], [3, 1, 4, 1]]
Upvotes: 0