Reputation: 1689
Could someone please run this for me and tell me how long it takes for you? It took my laptop 60s. I can't tell if it's my laptop that's crappy or my code. Probably both. I just started learning MatLab, so I'm not yet familiar with which functions are better than others for specific tasks. If you have any suggestions on how I could improve this code, it would be greatly appreciated.
function gbp
clear; clc;
zi = 0; % initial position
zf = 100; % final position
Ei = 1; % initial electric field
c = 3*10^8; % speed of light
epsilon = 8.86*10^-12; % permittivity of free space
lambda = 1064*10^-9; % wavelength
k = 2*pi/lambda; % wave number
wi = 1.78*10^-3; % initial waist width (minimum spot size)
zr = (pi*wi^2)/lambda; % Rayleigh range
Ri = zi + zr^2/zi; % initial radius of curvature
qi = 1/(1/Ri-1i*lambda/(pi*wi^2)); % initial complex beam parameter
Psii = atan(real(qi)/imag(qi)); % Gouy phase
mat = [1 zf; 0 1]; % transformation matrix
A = mat(1,1); B = mat(1,2); C = mat(2,1); D = mat(2,2);
qf = (A*qi + B)/(C*qi + D); % final complex beam parameter
wf = sqrt(-lambda/pi*(1/imag(1/qf))); % final spot size
Rf = 1/real(1/qf); % final radius of curvature
Psif = atan(real(qf)/imag(qf)); % final Gouy phase
% Hermite - Gaussian modes function
u = @(z, x, n, w, R, Psi) (2/pi)^(1/4)*sqrt(exp(1i*(2*n+1)*Psi)/(2^n*factorial(n)*w))*...
hermiteH(n,sqrt(2)*x/w).*exp(-x.^2*(1/w^2+1i*k/(2*R))-1i*k*z);
% Complex amplitude coefficients function
a = @(n) exp(1i*k*zi)*integral(@(x) Ei.*conj(u(zi, x, n, wi, Ri, Psii)),-2*wi,2*wi);
%----------------------------------------------------------------------------
xlisti = -0.1:1/10000:0.1; % initial x-axis range
xlistf = -0.1:1/10000:0.1; % final x-axis range
nlist = 0:2:20; % modes range
function Eiplot
Efieldi = zeros(size(xlisti));
for nr = nlist
Efieldi = Efieldi + a(nr).*u(zi, xlisti, nr, wi, Ri, Psii)*exp(-1i*k*zi);
end
Ii = 1/2*c*epsilon*arrayfun(@(x)x.*conj(x),Efieldi);
end
function Efplot
Efieldf = zeros(size(xlistf));
for nr = nlist
Efieldf = Efieldf + a(nr).*u(zf, xlistf, nr, wf, Rf, Psif)*exp(-1i*k*zf);
end
If = 1/2*c*epsilon*arrayfun(@(x)x.*conj(x),Efieldf);
end
Eiplot
Efplot
plot(xlisti,real(Ii),xlistf,real(If))
xlabel('x(m)') % x-axis label
ylabel('I(W/m^2)') % y-axis label
end
Upvotes: 2
Views: 346
Reputation: 3052
The cost is coming from the calls to hermiteH
-- for every call, this creates a new function using symbolic variables, then evaluates the function at your input. The key to speeding this up is to pre-compute the hermite polynomial functions then evaluate those rather than create them from scratch each time (speedup from ~26 seconds to around 0.75 secs on my computer).
With the changes:
function gbp
x = sym('x');
zi = 0; % initial position
zf = 100; % final position
Ei = 1; % initial electric field
c = 3*10^8; % speed of light
epsilon = 8.86*10^-12; % permittivity of free space
lambda = 1064*10^-9; % wavelength
k = 2*pi/lambda; % wave number
wi = 1.78*10^-3; % initial waist width (minimum spot size)
zr = (pi*wi^2)/lambda; % Rayleigh range
Ri = zi + zr^2/zi; % initial radius of curvature
qi = 1/(1/Ri-1i*lambda/(pi*wi^2)); % initial complex beam parameter
Psii = atan(real(qi)/imag(qi)); % Gouy phase
mat = [1 zf; 0 1]; % transformation matrix
A = mat(1,1); B = mat(1,2); C = mat(2,1); D = mat(2,2);
qf = (A*qi + B)/(C*qi + D); % final complex beam parameter
wf = sqrt(-lambda/pi*(1/imag(1/qf))); % final spot size
Rf = 1/real(1/qf); % final radius of curvature
Psif = atan(real(qf)/imag(qf)); % final Gouy phase
% Hermite - Gaussian modes function
nlist = 0:2:20; % modes range
% precompute hermite polynomials for nlist
hermites = {};
for n = nlist
if n == 0
hermites{n + 1} = @(x)1.0;
else
hermites{n + 1} = matlabFunction(hermiteH(n, x));
end
end
u = @(z, x, n, w, R, Psi) (2/pi)^(1/4)*sqrt(exp(1i*(2*n+1)*Psi)/(2^n*factorial(n)*w))*...
hermites{n + 1}(sqrt(2)*x/w).*exp(-x.^2*(1/w^2+1i*k/(2*R))-1i*k*z);
% Complex amplitude coefficients function
a = @(n) exp(1i*k*zi)*integral(@(x) Ei.*conj(u(zi, x, n, wi, Ri, Psii)),-2*wi,2*wi);
%----------------------------------------------------------------------------
xlisti = -0.1:1/10000:0.1; % initial x-axis range
xlistf = -0.1:1/10000:0.1; % final x-axis range
function Eiplot
Efieldi = zeros(size(xlisti));
for nr = nlist
Efieldi = Efieldi + a(nr).*u(zi, xlisti, nr, wi, Ri, Psii)*exp(-1i*k*zi);
end
Ii = 1/2*c*epsilon*arrayfun(@(x)x.*conj(x),Efieldi);
end
function Efplot
Efieldf = zeros(size(xlistf));
for nr = nlist
Efieldf = Efieldf + a(nr).*u(zf, xlistf, nr, wf, Rf, Psif)*exp(-1i*k*zf);
end
If = 1/2*c*epsilon*arrayfun(@(x)x.*conj(x),Efieldf);
end
Eiplot
Efplot
plot(xlisti,real(Ii),xlistf,real(If))
xlabel('x(m)') % x-axis label
ylabel('I(W/m^2)') % y-axis label
end
Upvotes: 3