Reputation: 619
Assuming I have the posterior samples for each of the four parameters. My question is how to plot the pairwise marginal distribution on a grid of 4*4=16 with ggplot2?
I would like to creat a plot like the picture below but instead of the scatter plot I will use a pairwise marginal distributions. Organized in the form of this kind of grid.
I am wondering can ggmcmc package achieve my goal?
Thanks in advance, guys!!
Upvotes: 2
Views: 1008
Reputation: 619
After getting help from the previous comments, I post the code below in case other people would like to do the same thing as me.
Below is a simple dataset I create for demonstration.This is the dataset "df" with four variables x, y, z, w. We want to get the pairwise joint kernel density estimation. One easy way I find is to use ggpairs from GGally package based on the comments by user20650. The codes are below: It will create the following plot:
ggpairs(df,upper = list(continuous = "density"),
lower = list(combo = "facetdensity"))
x y z w
1 0.49916998 -0.07439680 0.37731097 0.0927331640
2 0.25281542 -1.35130718 1.02680343 0.8462638556
3 0.50950876 -0.22157249 -0.71134553 -0.6137126948
4 0.28740609 -0.17460743 -0.62504812 -0.7658094835
5 0.28220492 -0.47080289 -0.33799637 -0.7032576540
6 -0.06108038 -0.49756810 0.49099505 0.5606988283
7 0.29427440 -1.14998030 0.89409384 0.5656682378
8 -0.37378096 -1.37798177 1.22424964 1.0976507702
9 0.24306941 -0.41519951 0.17502049 -0.1261603208
10 0.45686871 -0.08291032 0.75929106 0.7457002259
11 -0.16567173 -1.16855088 0.59439600 0.6410396945
12 0.22274809 -0.19632766 0.27193362 0.5532901113
13 1.25555629 0.24633499 -0.39836999 -0.5945792966
14 1.30440121 0.05595755 1.04363679 0.7379212885
15 -0.53739075 -0.01977930 0.22634275 0.4699563173
16 0.17740551 -0.56039760 -0.03278126 -0.0002523205
17 1.02873716 0.05929581 -0.74931661 -0.8830775310
18 -0.13417946 -0.60421101 -0.24532606 -0.1951831558
19 0.11552305 -0.14462104 0.28545703 -0.2527437818
20 0.71783902 -0.12285529 1.23488185 1.3224880574
Upvotes: 3