Reputation: 1545
I am new to NumPy. I have a 2-D NumPy array containing floating point values. I wish to get the index of those elements which are greater than 70 % of a certain value, say t ,in the entire matrix.
output = [(1,2),(4,7),(7,1)]
meaning arr[1][2], arr[4][7] and arr[7][1] have values greater than 70% of t
Using 2 loops to get job done is a fairly uncomplicated way. What is the most Pythonic way of getting it done (list comprehension etc.) ? Please point out any duplicates. Thanks !
Upvotes: 2
Views: 831
Reputation: 231395
An example:
In [76]: arr=np.arange(20, dtype=float).reshape(4,5)
In [77]: arr
Out[77]:
array([[ 0., 1., 2., 3., 4.],
[ 5., 6., 7., 8., 9.],
[ 10., 11., 12., 13., 14.],
[ 15., 16., 17., 18., 19.]])
A boolean index that can select values from the array
In [79]: arr>15
Out[79]:
array([[False, False, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False],
[False, True, True, True, True]], dtype=bool)
In [80]: arr[arr>15]
Out[80]: array([ 16., 17., 18., 19.])
Indexes where the condition is true, which can also be used to select elements
In [81]: I=np.nonzero(arr>15)
In [82]: I
Out[82]: (array([3, 3, 3, 3], dtype=int32), array([1, 2, 3, 4], dtype=int32))
In [83]: arr[I]
Out[83]: array([ 16., 17., 18., 19.])
Or turn the index tuple into a list of pairs
In [84]: list(zip(*I))
Out[84]: [(3, 1), (3, 2), (3, 3), (3, 4)]
In [87]: [arr[j] for j in zip(*I)]
Out[87]: [16.0, 17.0, 18.0, 19.0]
Upvotes: 3